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Introduction 

Calculus in upper secondary and beginning university mathematics 
The genesis of the conference were discussions between us on what was being taught – and what 
could be taught – under the name ‘calculus’ in schools, colleges and universities in our countries. 
Whilst we have nothing against the differentiation and integration techniques of calculus, we saw and 
see calculus as much more than a set of techniques; at its heart is covariational change, rates of change 
and accumulations, which can be overlooked by foci on techniques. The idea for the conference came 
when we realised that MatRIC (www.matric.no), the Norwegian centre for excellence in university 
mathematics teaching, might support a conference on calculus and allow a bigger audience for our 
discussions; and MatRIC agreed to support us.  

The conference had four themes: 

1. The school-university transition with a focus on calculus 
2. The fundamental theorem of calculus 
3. The use of digital technology in calculus 
4. Calculus, and its teaching and learning, for various disciplines 

We comment on these themes but first note that calculus at school and calculus at university are not, 
at a global level, clearly differentiated areas or approaches to calculus: what is taught at school in one 
country may be taught at university in another country; university calculus courses, especially for 
non-mathematics majors, often revisit school calculus content. The latter, revisiting school calculus 
content at university, is one reason why the school-university transition, our first theme, is an 
important focus. Another reason why this focus is important is the jump from what might be called 
informal (or elementary) calculus at school to formal calculus (or analysis) at university, the latter 
involving e-d definitions and proofs. Not all students will experience this jump but mathematics 
majors will – and this jump to rigour is a noted area of difficulty for many students. The fourth theme, 
on teaching and learning calculus in various disciplines, is related to the first theme in as much as this 
teaching and learning occurs, almost exclusively, at the university level, to students who have come 
from school. It is an important theme in itself: what are appropriate calculus courses for economists, 
for engineers, etc. and how might these differ (in content and approach) to calculus courses for 
mathematics majors? This is also a developing area in terms of practical approaches and mathematics 
education research. 

The third theme, on the use of digital technology in calculus, exists because (i) mathematical software 
has the potential to restructure what and how calculus is taught and learnt and (ii) there are many 
initiatives that essentially incorporate digital technology in the teaching and learning of calculus. 

The second theme is the only theme to focus on a specific part of calculus, the fundamental theorem. 
It is there for many reasons. It was the main focus in our initial discussions on calculus. It is a beautiful 
and important part of calculus. It is quite often covered scantily and/or badly – including the maximal 
bad approach, the statement “integration is the reverse of differentiation”. There is at least one 
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approach to teaching it (as part of a full calculus course) that we all respect – Pat Thompson’s Project 
DIRACC. 

The themes were built into the plenaries: Rolf Biehler was briefed to address the first and fourth 
theme and Pat Thompson was briefed to address the middle two themes in their plenary addresses 
and papers. The themes also partially structured the contributed papers in as much as invitations to 
present a paper went out with the proviso that the paper should address at least one of the four themes. 

We now provide an overview of the plenary lectures, plenary panel and contributed papers presented 
but first repeat that the conference was conceived, from outset to completion, as a discussion 
conference: the conference was more than the sum of the plenary contributions and the presented 
papers! 

The opening plenary was by David Tall. David was not well enough to attend the conference and 
provided a video which you can watch on https://matric-calculus.sciencesconf.org/. David has, almost 
certainly, written more papers on the teaching and learning of calculus than anyone else in the world, 
from 1975 to today. Amongst many other things, he is noted for his software (SuperGraph), the 
concept of local straightness and his Three Worlds approach. His plenary paper, The evolution of 
Calculus: A personal experience 1956-2019, addresses issues that touch on the first three conference 
themes.  

Rolf Biehler has invested much of his academic thought and effort in the past decade to issues 
concerned with beginning university studies, in which calculus or analysis play a central role. The 
main focus of his plenary, The transition from calculus to analysis – conceptual analyses and 
supporting steps for students, is on the transition problem and concerns the move from school calculus 
to university analysis and the culture of mathematics that underlies these courses. Students need help 
in this cultural move and his paper outlines and evaluates measures to support students in this 
enculturation.  

It is 25 years since Pat Thompson went public on his ideas for dynamic student experiences leading 
to the fundamental theorem of calculus in a paper in Educational Studies in Mathematics. Since then, 
he has developed a complex and highly respected calculus curriculum based in quantitative reasoning, 
differentials as variables, rate of change and accumulation in which student and instructor use of 
digital resources as didactic objects, not as mere tools for illustration, is essential. He outlines 
practical and theoretical issues related to this curriculum in his plenary Making the Fundamental 
Theorem of Calculus fundamental to students’ Calculus. 

The plenary panel, entitled From Newton’s first to second law: How can curriculum, pedagogy and 
assessment celebrate a more dynamic experience of calculus?, had contributions from Alejandro S. 
González-Martín, Vilma Mesa and John Monaghan who set out from acknowledging that, while 
digital and other resources provide the capacity to create and celebrate dynamic ways in experiences 
Calculus, there are numerous institutional and other challenges that may impede embracing this 
capacity. The three panelists addressed those first through sharing their experiences in the study and 
design of curriculum and assessment materials for calculus. They then mapped out one possible way 
of fostering change: designing tasks—for classroom activity as well as assessment—that convey 
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important meanings of calculus, are accessible, celebrate its dynamism, and are tailored to the needs 
of students in various disciplines who will soon enter diverse worlds of work. 

There are 27 contributed papers. This number is not accidental: we wanted the conference to enable 
each paper to be discussed in depth and with regard to similar papers; 3 of the conference days had 3 
parallel ‘paper sessions’ with 3 papers in each session and 3x3x3=27. The contributed papers were 
grouped in 3s, according to their focus. You can see the grouping by going to the conference 
programme on the website: for example, the papers by Feudel, González-Martín and Viirman in 
strand C on the Thursday of the conference all concern calculus for students not majoring in 
mathematics. We are pleased with the variety and quality of the papers. Readers should be aware that 
the authors had the challenge of presenting complex ideas in just four pages – not an easy task! 

The conference is over but its brief to encourage discussion on what and how is being – and could be 
– taught under the name ‘calculus’ continues. Special issues of the International Journal for Research 
in Undergraduate Mathematics Education and Teaching Mathematics and its Applications, based on 
papers and collaborations arising from the conference, are planned. At least one potential research 
project, Calculus in upper secondary school and in teacher education – an overview of current 
practices, is in its inception and follow up conferences, in which we aspire to attract participation by 
the many colleagues from around the world not present in this first conference, are under discussion. 
The conference website (https://matric-calculus.sciencesconf.org) will, for the time being, keep 
people abreast of developments in these areas. 

John Monaghan, University in Agder, Norway and University of Leeds, UK; 
john.monaghan@uia.no 

Elena Nardi, University of East Anglia, UK; e.nardi@uea.ac.uk 

Tommy Dreyfus, Tel Aviv University, Israel; TommyD@tauex.tau.ac.il  
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Plenary paper  

The transition from Calculus and to Analysis – Conceptual analyses 
and supporting steps for students 

Rolf Biehler 

University of Paderborn, Germany; biehler@math.upb.de  

Abstract 

The paper starts with discussing the transition problem by characterizing the type of mathematics 
that is characteristic of school calculus. General types of measures for supporting students in the 
transition phase will be briefly reviewed. An essential aspect of the transition problem is the new 
culture of mathematics that is underlying Analysis courses. Arguments for making this change in 
culture more explicit and some concrete suggestions will be provided. The paper discusses examples 
from two empirical studies to support this analysis. In the first study, some results of an Analysis 1 
final examination course in the first semester are analyzed. One task of the examination is taken, 
where school-mathematical solution strategies conflict with university-based norms. A second 
example is taken from a design-based research study, where a workshop was designed for supporting 
the guided reinvention of the concept of convergence of a sequence before formally introducing it in 
the lecture. One lesson learned of this second study is to be much more explicit about which conditions 
mathematical definitions at university have to fulfil, which seldom is a topic of explicit instruction. 

Introduction 
Students in Germany obligatorily learn Calculus in the last years of the college-bound schools leading 
to the Abitur (Gymnasium) and usually take courses on Analysis in their first year of studies if they 
have chosen a subject that has a mathematical component. These Analysis courses vary depending 
on whether the students have entered a programme for mathematics majors or, for instance, for future 
engineers or economists. In general, the university courses on Analysis in Germany are similar in 
mathematical style to the Real Analysis courses in the US, and the calculus courses at colleges in the 
US are somewhat "in-between" the school calculus courses in Germany and the University Analysis 
courses. In other words, the transition from Calculus to Analysis in Germany coincides with the 
secondary-tertiary transition. 

Calculus at the school level: sources of transition problems 
The relatively new German national standards for the last three years before the Abitur include 
standards for teaching calculus (KMK, 2012). However, it is certainly not wrong to say that these 
standards do not focus on easing the transition to Analysis at the university level. The transition is 
relevant for a substantial part of students, namely those who study STEM subjects or economy. 
However, these students are not the majority. Calculus teaching has to provide an excellent education 
for a broader audience, where aspects of general education (Allgemeinbildung) have to be taken into 
account (Biehler, 2019). A significant concern of the mathematics education community is that 
students do not just develop calculation skills at the school level but also the conceptual understanding 
of the basic concepts. The notion of "Grundvorstellungen” (“basic mental models” is an approximate 
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translation) is used to characterize this understanding. This notion is related to the notions of mental 
models and concept image (Greefrath, Oldenburg, Siller, Ulm, & Weigand, 2016). Derivative should 
be understood as the local rate of change, the slope of the tangent, or the best linear approximation. 
The cumulation aspect of the integral including reconstructing the “stock function” from the rate of 
change function should be important conceptual ideas, besides understanding the definite integral as 
a measure for the oriented area under a function graph. These “Grundvorstellungen” are particularly 
necessary for the effective use of integrals and derivatives in modelling contexts. The theoretical 
aspects of calculus lie not in the centre of a typical course. 

Recently, there have been efforts to offer non-compulsory additional courses already at the school 
level to students who are interested in entering study programs in STEM subjects. This trend is in 
line with recent recommendation of the German associations of mathematics, didactics of 
mathematics and STEM teachers1 who also recommend measures for the first semester of university 
studies such as pre-university bridging courses and renewed curricula in the first study year. These 
recommendations are backed up by a recent Delphi study in which more than 800 German 
mathematics university teachers were asked, what they consider as necessary prerequisites for 
students entering a STEM university program (Neumann, Heinze, & Pigge, 2017; Pigge, Neumann, 
& Heinze, 2017). 

A recent book that stems from such a course offered at school level is the book by Proß and Imkamp 
(2018), which – in large parts –  focusses on the transition between Calculus and Analysis.  Similar 
content is also covered in university-based pre-university bridging courses such as the studiVEMINT 
course (http://go.upb.de/studivemint), where the author of this paper is a co-developer of. I will take 
the book by Proß and Imkamp (2018) and the studiVEMINT course as an example of a view of what 
topics and competencies are currently missing in school mathematics for easing the transition. The 
courses improve the “technical basis” for Analysis at the university level in that covers algebraic 
techniques such as inequalities including those with the absolute value function, and equations with 
powers, roots and logarithms and of course practices to work with algebraic terms (including those 
with fractions). However, this is not a new type of mathematics. These topics "disappeared" from 
school mathematics in recent years. 

In contrast to textbooks at the school level, the presented rules are mathematically explained and 
justified if not proven. In the terminology of ATD (the Anthropological Theory of Didactics) the 
technological block is expanded. However, different from university courses (Winsløw & Grønbæk, 
2014), the new technology in the sense of ATD does not become a practice on a higher level: students 
are supposed to fluently calculate but not to prove theorems about roots and logarithms. 

A different approach elaborates the function concept through emphasizing related concepts such as 
injectivity, surjectivity, composition of functions and inverse functions are treated as well as domain 
and co-domain emphasizing functions as mappings. This perspective on functions is different from 
the current perspective in school mathematics. We also find a chapter on sequences and limits, 
including its formal definitions. The topic “sequences and limits” has practically disappeared from 

                                                
1 http://mathematik-schule-hochschule.de/images/Massnahmenkatalog_DMV_GDM_MNU.pdf 
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the secondary curriculum. Often, limits are introduced the first time when the derivative concept is 
introduced, but not as a separate chapter. If school textbooks have separate chapters on sequences and 
limits, these chapters are often non-compulsory, and sequences and limits are – if at all - introduced 
for modelling discrete processes of real-life situations but not as fundamental theoretical means for 
the conceptual development of calculus. The above book also contains a chapter on continuity and a 
section on differentiability. Both concepts do not play a significant role in secondary schools. 
Continuity usually has no separate chapter in a school textbook. Continuity is sometimes mentioned 
as a graphical property of functions ("one can draw the graph by a pencil without jumps and holes"). 
As the fundamental theorem of calculus (FTC) is a compulsory topic in secondary mathematics – all 
students should know a visual proof of that theorem according to the standards.  The intuitive concept 
of continuity is mentioned as an assumption, but it is rarely pointed out, why this assumption is 
essential, and it is often quickly forgotten by students because the most important "meaning" of the 
FTC at school level is the justification for determining values of definite integrals by using primitive 
functions. This meaning is represented in the practical block surrounding the FTC.  Proß and Imkamp 
(2018) and the studiVEMINT bridging course also discuss differentiability and non-differentiability 
of a function as a conceptual prerequisite for defining the derivative, whereas most school textbooks 
do not question the existence of a derivative, which is correct for nearly all the functions in a school 
calculus course. There are some notable exceptions, however, which are downplayed in most school 
textbooks. The integral is often introduced by starting with step functions in a modelling context, 
where the oriented area under a step function can be given a meaning in the context. For instance, if 
the step function can be interpreted as velocity, the area function stands for the covered distance. The 
area function depending on a variable x can be calculated using elementary geometry. The resulting 
area function has points of non-differentiability where the step function changes its value (where it 
has points of discontinuity). 

These differences are discussed in teaching material for courses in didactics of calculus (Biehler, 
2018) and based on an analysis of selected textbooks. A systematic textbook analysis would 
undoubtedly confirm the compartmentalization structure of school calculus focussing on separated 
practical blocks similar to what analyses of other topics from the perspective of ATD have revealed 
(González-Martín, Giraldo, & Souto, 2013). This structure of school calculus is fundamentally 
different from university analysis. An even deeper lying epistemological difference was brought into 
focus based on textbook analyses by Witzke and colleagues (Witzke, 2014; Witzke & Spies, 2016) 
who characterize school calculus as an empirical theory of graphically represented function graphs. 
This characterization is related to the fundamentally different role graphs play in school Calculus and 
in university Analysis (Weber & Mejía-Ramos, 2019). 

Transition problems in the first study year 
In general, at the university level in Germany, we can observe three types of measures for supporting 
students in the transitional phase. In the WiGeMath project, we are collaborating with 14 German 
universities with regard to analysing and evaluating support measures. We analyse the most common 
types of measures: pre-university bridging courses, so-called bridging lectures for the first study year 
that are especially designed for easing the transition, and measures that accompany traditional lectures 
such as the creation of mathematics support centres, non-compulsory additional tutorials, or 
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supportive e-learning material (Kuklinski et al., 2018; Liebendörfer et al., 2017). What is not so 
common in Germany is a fundamental content redesign of the standard introductory lectures, i.e. 
Analysis and Linear Algebra. 

A wide-spread measure in German universities is to offer pre-mathematical bridging courses for 
future students to support the transition process. Universities offer these courses in the months 
between attending school and starting at university, and they last between two and six weeks. Calculus 
and Analysis play a role in most of these courses, goals and orientations of these courses vary 
considerably (Biehler & Hochmuth, 2017; Biehler et al., 2018) Some courses repeat school 
mathematics, and others introduce mathematical concepts at a level of rigour similar to later 
university mathematics. The latter type of bridging course aims at preparing students for the 
upcoming level of rigour and a changed mathematical practice or praxeology. Among others, they 
already practice the new role for formal definitions and theorems, and the new role of arguments 
based on graphical representations, which are no longer accepted as valid arguments but only as 
preparatory "heuristic" ones. Some courses make the transition into a new practice with different 
features explicit instead of just working on one of the levels. In these types of courses, the conscious 
change of the expectations and the mathematical belief systems of the students stand in the focus 
while taking their previous knowledge and orientations into account.  

Felix Klein is often quoted speaking about the “double discontinuity” of the transitions that 
mathematics teachers have to face: school mathematics -> university mathematics -> school 
mathematics (Winsløw & Grønbæk, 2014). We are concerned with the first transition in this paper, 
but for the second transition in calculus, see Wasserman, Weber, Fukawa-Connelly, and McGuffey 
(2019).  

The new praxeology of university mathematics is – as a rule – not an explicit topic of teaching in the 
standard first semester courses such as Analysis. The new style of defining, proving and theory 
development is practised and communicated through examples in the lecture. A decisive role for the 
enculturation has the feedback that students receive to their written homework, either as written 
comments to their submitted work or orally in weekly tutorial sessions, where norms for adequate 
proofs and written argumentations are discussed at least implicitly. Part of the students does not 
understand and master this largely implicit enculturation. In a joint project with Leander Kempen 
(Kempen & Biehler, 2019a, 2019b), we newly designed a first-semester course called "Introduction 
into the culture of mathematics". The accompanying research followed a design-based research 
paradigm, and we re-designed the course three times based on the previous research results. One of 
the significant changes was that we became more and more explicit about the question of what counts 
as proof and what is an adequate use of formal mathematical language. We used the language of 
socio-mathematical norms (Yackel & Cobb, 1996) for the analysis and redesign of the course. A 
redesign of an Analysis 1 course may profit from this approach. 

In the following, examples from two empirical studies done at the khdm (competence centre for 
research in university mathematics education, www.khdm.de) are presented to support this analysis. 
In the first study, the results of an Analysis 1 final examination at the end of the first semester are 
analyzed. One task of the examination is taken, where school-mathematical solution strategies 
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conflict with university-based norms. A second example is taken from a design-based research study, 
where a workshop was designed for supporting the guided reinvention of the concept of convergence 
of a sequence before formally introducing it in the lecture. One lesson learned from this second study 
is to be much more explicit about which conditions mathematical definitions at university have to 
fulfil, which seldom is a topic of explicit instruction. 

Conflicts between school mathematics and university mathematics education: An 
example from a final Analysis 1 examination 
Enculturation can be less successful than expected. I will pick up an examination question of the final 
examination of a first-semester Analysis course for mathematics majors and future Gymnasium 
teachers. A systematic analysis of students results in the complete examination will be published 
elsewhere. 

The task from the examination is shown in Figure 1. 

Aufgabe 7 (my translation) 

Consider the Function 𝐹:	ℝ → ℝ, 𝑥 ↦ ∫ 𝑡+ exp(𝑡) 𝑑𝑡.3
4  

(a) Prove that 𝐹 is differentiable and 𝐹5(𝑥) = 𝑥+ exp(𝑥). (4 points) 
(b) Determine all local minima and all local maxima of 𝐹.	Determine the most extended possible 

intervals in which 𝐹 is monotonically increasing and the most extended possible intervals in 
which it is monotonically decreasing. (8 points)  

Figure 1: The examination task 

The task is very close to school mathematical tasks but also has essential differences. The results were 
surprisingly bad from the perspective of the lecturer and the researchers. The average number of 
points was 4.14 of a maximum of 12 possible points (see Figure 2). The written test had nine tasks; 
five of them had better average results than task 7.   

 
Figure 2: Distribution of points of the examination task (N = 96), mean no of points: 4.14 of 12) 
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Figure 3: Two example solution for calculating the integral and then the derivative, one of them with 

success. 

Subtask a) is a trivial one if one has understood the theoretical claim of the fundamental theorem of 
calculus. However, most students who worked on the task tried to calculate the integral (often not 
successful, see Figure 3 for the first example), and then they tried to calculate the derivative. The task 
a) would not have been posed in school mathematics, where the notion of differentiability is 
downplayed if at all mentioned and the theoretical nature of the FTC is downplayed in favour of its 
practical value to calculate integrals. One interpretation of this comparably unfortunate result is that 
students did view the FTC still from a school mathematical perspective and interpreted the task just 
as a calculation task. 

Subtask b) is largely a school mathematics task, which, however, has to be solved on the level of 
university mathematics. Calculations show that F’(x) = 0 iff x= 0, but F’’(0) = 0. In order to argue 
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that there is a local minimum, students could reason with the sign change of F`(x) in x = 0, or calculate 
further derivatives finding that the first derivative with F(n) (0) ≠ 0 is with n = 4, where F(4) (0) > 0. 
This result can be used as an argument that there is a minimum of F in x = 0. However, these 
conditions based on higher derivatives are often not part of the university course. Our students had 
difficulties in various respects. For instance, F’’(0) = 0 is wrongly interpreted in that there is no 
extremum in x = 0 (that this is a wrong conclusion is discussed in most school textbooks already). 
Another source of problems is that the statement “F’(x) = 0 iff x = 0” is often not interpreted as a 
theoretical result stating that can be no other extrema beside x = 0. In current school teaching, the 
condition F’(x) = 0 mainly has the practical function to enable the calculation of extremal points. This 
tradition is challenged – but has probably not yet fundamentally changed -- by the widespread 
introduction of graphical calculators. If one "sees" a minimum in a function graph in a certain window 
and this seeing is allowed as an argument in students reasoning, it becomes more important to know 
that further extremal points cannot exist theoretically. So, graphical calculators have the potential to 
show the need for theoretical argumentation. However, these tools are not introduced in schools for 
this purpose. 

Anyway, let us focus on the university context again. Explicit use of the theoretical nature of “F’(x) 
= 0 iff x = 0” in the argumentation, however, is necessary to give a complete answer to the question 
to find all extremal points.  

We can only speculate what changes in the teaching of the Analysis course may lead to better results 

(a) The distinction of the theoretical and the practical value (for calculations) of a theorem has to 
be explicitly introduced. 

(b) In cases where university mathematics overlaps with school mathematics (such as in the case 
of finding extremal points), it may pay to explicitly contrast and relate the school 
mathematical reasoning to the university mathematical reasoning. This would help students 
see school mathematics from a higher standpoint, concretized by examples and not just as 
lecturers’ lip-service to globally justify why Analysis is different from Calculus. With such 
examples, theoretical justifications of school mathematical practices including specifications 
of the application conditions of school mathematical practices (discussing extreme and other 
exceptional cases) can show the new university praxeology without neglecting the school 
level one. 

Aspect (a) can be more easily included in an Analysis I course than (b). Whereas (a) makes explicit 
some implicit socio-mathematical norms of a course. The inclusion of considerations of (b) would 
imply that the comparison of school mathematical thinking and reasoning and university 
mathematical reasoning becomes a topic of a university mathematics course itself.  

In school teaching, the explicit discussion of errors, preconceptions and misconceptions of students 
is seen as relevant, when conceptual change is the aim. This can be considered as a challenge of 
university mathematics, too. At least, the above example shows that school mathematical practices 
seem to coexist in students’ minds together with new university mathematical practices and can lead 
to poor results in examination. 
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Discussing these changes from school to university mathematics has become the topic of some (non-
obligatory) pre-university bridging courses. It is also a topic in course for future teachers on the 
didactics of calculus at the school level, in order to support the second transition back to school but 
does this does not help with the first transition and discontinuity. However, I know of no Analysis 1 
course that has taken up this challenge. 

Supporting students in developing adequate concept definitions and concept 
images at university: The case of the convergence of sequences  
In her dissertation which I supervised, Laura Ostsieker (2018) developed a non-compulsory 4-hour 
workshop for students of an Analysis 1 course that should support them in constructing the formal 
definition of convergence of a sequence in an attempt of guided reinvention. The workshop was 
situated some weeks after the start of the Analysis 1 course, just before the formal definition was 
introduced in the lecture. The study builds on work by Roh (Roh, 2010a, 2010b; Roh & Lee, 2017) 
and Oehrtman (Oehrtman, Swinyard, & Martin, 2014; Oehrtman, Swinyard, Martin, Roh, & Hart-
Weber, 2011). The basic idea – which is taken from Przenioslo (2005) -- for setting up a learning 
environment is to give students a set of examples of sequences that are called to be “convergent” and 
others that are called non-convergent and ask the students to construct a definition of "convergence" 
where the examples are examples of, respectively non-examples (see initial task formulation in Figure 
4). The set of examples was chosen to include examples that often have not become part of students’ 
concept image after students have learned the formal definition. Examples include sequences that are 
alternating around their limit or where some (a finite or infinite number of) elements are equal to the 
limit itself. Figure 5 shows the set of examples and one non-example. Scatter plot graphs of the 
sequences (𝑛, 𝑎9),…	(𝑛, 𝑥9)	were presented to the students, and the students were asked to relate the 
formal definition to the respective graph and to “formulate characteristic properties of every 
sequence”. After that the task was 

“The sequences (𝑎9)… (𝑓9)  are called convergent to the limit 1; the sequence (𝑥9) is not convergent. 
Describe the joint property as good as possible that the sequences (𝑎9)… (𝑓9) have and the sequence 
(𝑥9)  has not.” 

Figure 4: Initial task formulation (Ostsieker 2018, p. 86; my translation) 

Laura Ostsieker had prepared a set of prompts for supporting the students when or if they got stuck. 
The workshop was offered twice. The second time, the revised conception of the workshop (tasks, 
visualisations, prompts) was offered to a different group of students one year later. The research study 
followed a design-based research framework. Hypothetical learning trajectories were developed for 
the first workshop, revised for the second one. Results from the retrospective analysis of the second 
version were provided for future implementation together with developing a local instruction theory. 
We cannot present Ostsieker with her detailed research questions and great results in this paper, but 
we will focus on one aspect: How did the formulation of the task change from the first to the third 
version? How does this change reflect some of the results of Laura Ostsieker’s empirical study?  
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Figure 5: The set of sequences (𝒂𝒏)… (𝒇𝒏)   are examples for the concept to be defined, (𝒙𝒏) is a non-

example; “Vielfaches” means multiples; “sonst” means “else” (Ostsieker 2018, pp. 84). 

The task was challenging on two levels. We anticipated problems within the transition from an 
intuitive notion and verbally formulated attempt to characterize “joint properties” to a formal 
definition for the concept of convergence – given the very long history in mathematics that finally 
led to a formulation of the modern formal definition. What we did not anticipate were students' 
problems on a meta-level (see also Schüler-Meyer, 2018 for the role of the meta-level). They had to 
decide when a characterization they had developed with verbal and symbolic elements should be 
accepted as satisfactory. We had prepared the prompt "check whether your characterization is clear 
enough that it can be decided for every sequence whether it fulfils the characterization or not" to 
motivate and direct students for doing the next steps. In the second version of the task, we added this 
to the task itself to support a more self-regulated process of concept definition. 

In retrospect, this was not surprising. Although the students had observed for several weeks how a 
mathematician was defining concepts and was using these definitions in theorem proving, students 
themselves had had no experience at all with activities of "defining concepts", which is typical when 
mathematics is presented like a ready-made product and not as a process. 
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Results of Ostsieker’s empirical study include a new formulation of the initial task and further 
elaboration of the support measures for the different steps of the process. I will cite the final third 
formulation and use it as a starting point for describing some of her results. This third formulation is 
a result of the retrospective analysis, but it was not yet tested empirically in a new trial. 

1. “We are going to discover the definition (in university mathematics) of the convergence of a 
sequence to 1. The concept has to be defined in such a way that the sequences (𝑎9)… (𝑔9) 
are convergent, and the sequence (𝑥9)  is not. 

2. Aim at formulating a joint property of the sequences (𝑎9)… (𝑔9) that the sequence (𝑥9) does 
not possess as one single condition. 

3. This condition has to be formulated in such a way that somebody to whom this formulation is 
presented can objectively decide and argue for every arbitrary sequence, whether this 
sequence has the property or not. Every person to whom this formulation is presented should 
come to the same conclusion about every specific sequence. 

4. If you have the opinion that you have formulated an adequate property, check for all the 
example sequences whether they possess this property and check whether (𝑥9) does not have 
this property. If some of these checks are negative, revise your formulation.”  
(Ostsieker 2018, p. 542, my translation. The numbering was added to make references in the 
following text clearer).  

Figure 6: final task formulation after two iterations of the workshop 

The formulation in 1. explicitly asks for a mathematical definition and not only for a "property" so 
that it is possible to refer to socio-mathematical norms for definitions when students present 
formulations of a property that does not qualify for a definition. A "definition in university 
mathematics" was added because some students had entered the debate with a school-mathematical 
concept of “convergence” according to which some examples were not convergent that were claimed 
to be “convergent” by the task. This happened when students had a school-mathematical convergence 
concept that calls sequences convergent only when the elements are approaching a limit 
(monotonically) but never reaching it. We did not expect that some students did not accept the rules 
of our “game”, so we choose to make it explicit that we have to distinguish by name possible previous 
concepts from the new concept that is to be defined. This reformulation may help; however, self-
confident students maybe not willing to give up a concept that they found useful in the past. This 
observation may point to limitations of the approach Laura Ostsieker (2018) and Przenioslo (2005) 
have chosen. The approach does not provide problems that motivate a change of previous definitions 
because of theoretical or practical reasons but forces the students to accept that there is some hidden 
good reason in the choice of the provided examples. In the sense of Freudenthal’s didactical 
phenomenology, no actual problem situation is presented that motivates the creation of a new concept 
(Freudenthal, 2002).  

The formulation in 2 (“one single condition”) reflects situations that occurred in the students' debates. 
Some groups characterized several subgroups of the examples adequately and then formulated the 
definition by several statements connected by "or". For instance, "convergence" can mean 
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monotonically approaching a number with arbitrary closeness but not reaching it" or "being equal to 
this number from a certain n onwards" or "alternating around that number with …" or doing one of 
these things with a finite number of exceptions" etc. This solution even if it fulfils all criteria of rigour, 
would be considered as "inelegant" in mathematics. This phenomenon reveals another norm that 
mathematical definitions have to fulfil. Students in the first two workshop were right in claiming that 
this requirement was not specified in advance. That is why it was added. 

The formulation 3 reacts to the situation that some students were satisfied with formulations for 
themselves. Pointing to potential “readers” of the definition should initiate a reflection of the 
preciseness and understandability of the definition and motivate students to check their definition 
with further self-created examples or use other students’ views. This extension of the task formulation 
may be of practical value. However, students may need to have more opportunities to reflect 
themselves on criteria that a mathematical definition must fulfil (Edwards & Ward, 2004; Ouvrier-
Buffet, 2006; Zaslavsky & Shir, 2005). The formulation bears another problem. A mathematician 
would say that a mathematical definition must "in principle" allow to decide whether an object fulfils 
it or not. It will of course often happen that to decide whether a concrete object fulfils a definition or 
not may be considered as a severe mathematical problem to be solved in the future. Moreover, the 
formulation "every person" should come to the same conclusion is of limited practical: how can this 
be decided? 

The formulation 4 reflects the following observation. In the anticipated learning trajectories, it was 
assumed that the students work on a successive improvement of their formulations of a definition, 
creating a first version of the definition from a limited set of examples, then systematically testing 
this formulation on all initial examples and also on new ones, then revising the definition and so on. 
Such a systematic approach was seldom observed. Therefore, the formulation was added to foster 
such an approach. The reason for the relatively unsystematic approach towards concept definition 
may not only be due to limited experiences in creating mathematical concept definitions, but it is 
plausible that students may have seldom met concept definition tasks or situations that require new 
concept definitions in their school and everyday life. In sum, these results also support the need to 
make implicit norms explicit and provide more extensive experiences for students to actively and 
reflectively participate in the new culture. 

Concluding remarks  
The transition from school Calculus to university Analysis is complex and multifaceted. Our 
examples pointed to problems that more explicit enculturation into mathematics at university level 
may help to overcome. 
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This presentation was prepared as a 30-minute opening plenary for the Conference on Calculus in 
Upper Secondary and Beginning University Mathematics at The University of Agder, Norway, 
August 6 – 9, 2019. I was invited to present a personal view of the development of calculus over the 
last fifty years to set the scene for the conference. For health reasons I was unable to travel, so I made 
the video at home. It is available on YouTube at  

https://www.youtube.com/watch?v=eOwQlEPKCfY&feature=youtu.be 
At the conference, participants will present various different approaches to the calculus. This opening 
plenary is designed to respect all viewpoints and to encourage participants to reflect on their personal 
views, to seek a broader overview of the whole enterprise. The issues are complex and no single 
individual can have a complete overall picture. So, although I will fulfil the request to present a 
personal view of the evolution of calculus, I will present evidence from a range of sources to seek an 
overall view. I will also add extra detail [in smaller type]. 

The calculus focuses on how we humans perceive, interpret and predict change and growth. The 
presentation will consider how we give meaning to dynamic change, how we interpret operational 
symbols as operations which then function as mental objects that can themselves be manipulated. It 
formulates how mathematics develops in sophistication through practical, theoretical and formal 
ways of thinking. This will include very recent developments in my own publications that offer simple 
new ways of giving meaning to symbolic expressions and new ways of interpreting dynamic change 
using retina displays. 
I will begin with the human capacity for embodiment as we interact and interpret the world through 
practical activities and move to a higher theoretical level where visual embodiment of the limiting 
process stabilizes visually on the limit object. I will take an excursion to formal analysis where I will 
prove a simple formal theorem that shows that we can visualise infinitesimals as points on the number 
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line. I will use the cultural theory of Raymond Wilder to interpret how social aspects colour our ways 
of thinking and invite you to reflect honestly on your own viewpoint. I invite you to produce evidence 
to challenge and improve the overall picture that I offer. We make advances by challenging our own 
thinking. 

Introduction 
This presentation reviews the rapid evolution of calculus over the last half century. It formulates 
simple ways to make calculus meaningful to the wide range of teachers, learners and experts that take 
account of the latest developments in digital technology, the workings of the human brain and the 
cultural aspects that affect the nature of human society. 
The conference organisers invited me to offer a personal view of the evolution of calculus as it was 
50 years ago and as it is now. I have decided to broaden this, to experiences since I first encountered 
calculus myself as a fifteen-year-old in school. 
I note that the conference is focused around four themes.  

A. The school-university transition with a focus on calculus. 
B. The fundamental theorem 

C. The use of digital technology 
D. Teaching & learning in various disciplines. 

This will be a personal journey. It will touch on ideas that have fascinated me as we live through a 
life-time that has seen – and continues to see – unprecedented evolution of digital technology. From 
such a vast enterprise, I seek an inner simplicity that gives human meaning to the mathematics of 
change and growth. 
Let me begin by taking you back to my first encounter with calculus as a fifteen-year-old schoolboy. 
When I began to learn calculus, my mathematics master, Mr J. H. Butler, a graduate of Oxford 
University, wrote:  

 
Figure 1: First report as a calculus student 

He was concerned that I spent too much time on a variety of activities and did not spend all my time 
on mathematics. This is still true and it is why I wish to refer to a range of other disciplines in my 
presentation, because we gain a greater insight into the ways we make sense of the calculus by 
considering the wider picture. 
I really enjoyed working from the Calculus book by school teachers Durell and Robson, published in 
the thirties. 
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Fig 2: Introducing the derivative in the book by Durell and Robson (1933) 

It defined the derivative as the limit of δy over δx as δx tends to zero. Much later, for any real number 
dx, it defined dy to be 𝑓5(𝑥) times dx, then, for dx non-zero, 𝑓5(𝑥) equals the quotient dy/dx. 
This is based on the book by the Cambridge mathematician, Robert Woodhouse, published in 1803, 
which introduced the Leibniz notation to England after more than a century using mainly Newton’s 
approach. It spread to English speaking nations around the world, including the American 
Mathematical Society which based its organisation on that of the London Mathematical Society in 
the 1880s. 
Note the problematic meaning of the limit where δy over δx could only be calculated for δx non-zero 
while the limit value involved putting δx equal to zero. 

There were also multiple meanings of symbolism, such as 𝑓5(𝑥) being both a quotient and the symbol 
d/dx being an operation: 

𝑓5(𝑥) =
𝑑𝑦
𝑑𝑥 = B

𝑑
𝑑𝑥C𝑦 

It was even an operation that could be repeated to give 

D E
E3
F
G
𝑦 = EHI

E3H
. 

Then there was the meaning of dx in dy/dx and in the integral ∫ 𝑦	𝑑𝑥, where it is spoken as the integral 
of y ‘with respect to x’. 

Many problematic meanings still remain. 

Problematic meanings in calculus today 
Calculus is still based on an informal limit concept.  For instance, the US Advanced Placement 
Calculus speaks of four ‘big ideas’: 

• Limits 
• Derivatives 

• Integrals and the Fundamental Theorem 
with an alternative curriculum including 

• Series 

The detailed curriculum focuses on concepts that can be tested on multi-choice tests. 

Meanwhile, mathematics education research, is full of misconceptions that occur in learning. 

Digital technology offers new facilities. 

• for performing fast and accurate numerical calculations 
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• for the manipulation of symbols 

• for drawing dynamic pictures that offer visual and conceptual meaning. 

Graphic Calculus 
My own work in the 1980s involved developing software called Graphic Calculus to visualise 
concepts. 
One program allowed the user to magnify part of the graph, to see that, close up, familiar graphs 
looked less curved and — under high magnification — they looked locally straight. 

 
Figure 3: Magnify 

The derivative now is not introduced as a limit, it is the slope of the graph itself. 
It is possible to look along the graph to see its changing slope. 

It is also possible to trace it with your hand to feel it. 
It has human meaning. 
Another program plots successive lines of slope (f(x + c) – f(x)) / c on the graph, for variable x and 
small fixed c, to plot points that lie on the graph that I termed the practical slope function for variable 
x. (In the UK we called it the ‘gradient function’.) 

 
Figure 4: Plotting points on the practical slope function 

In the case of f(x) = x2, the practical slope function is 2x+c. As c is taken to be small, the graph 
stabilises visibly to the graph of 2x.  

Local straightness gives meaning to all standard derivatives. 
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Figure 5: The practical slope function of 2^x 

For instance, looking at the graphs of 2^x and 3^x shows that they have the same general increasing 
shape but the slope of 2^x is below the original and 3^x is above. Look for a number e between 2 and 
3 where the slope function for e^x is again e^x. 
Seeking a polynomial approximation links the visual information to symbolic calculation to give a 
sense of how quickly the approximation converges and allows e to be calculated to ten or more 
decimal places by hand. (Or you may use Excel, if you really wish to do so …) 
The graphic approach gives visual meaning to the symbolic derivative.  (Wow!) 

But it does not deal with the rules of differentiation.  (Uhu!) 
Recent developments which I will discuss later offer new meanings to fill this gap. This will offer a 
simple way to understand how spoken articulation gives meaning to expressions and how to interpret 
the flexible meaning of sub-expressions as process or mental object. 

Integration and the fundamental theorem 
Now we turn to integration and the fundamental theorem. In this case, I take a function such as sin(x) 
and keep the same vertical scale while stretching the horizontal scale. In this case you can see that 
the graph ‘pulls flat’ (Figure 6). 

 
Figure 6: Stretch a (continuous) graph horizontally 

Taking the vertical thickness of the pixel line as ±epsilon, the idea of ‘pulling flat’ embodies the 
formal definition of continuity at x: 

Given any ε > 0, we can find a δ > 0 such that, stretched in a window width x ± δ, 
the graph lies in the pixel line f(x) ± ε.  



 

 

 23 

Drawing a continuous graph on paper involves a dynamic physical process, that produces a visual 
object: the graph. Suitably programmed, a digital picture of a continuous graph will ‘pull flat’ when 
it is stretched horizontally. 

 
Figure 7: Dynamic definition of continuity 

This offers a vital change in meaning. While a static picture in a book does not offer any insight into 
the fundamental relationship between practical continuity in drawing and the formal epsilon-delta 
definition, horizontal stretching of a digital picture of the graph offers a dynamic embodied meaning 
that links practical drawing of a continuous curve to the formal definition of continuity. 

This offers a new embodied insight into the fundamental theorem of calculus (Figure 8). 

 
Figure 8: Visualising dA as y dx 

If we look closer at the picture where the graph has been pulled flat in a fixed window, the area A to 
a point x on the x-axis with y measured up from the x-axis can be imagined to change by an increase 
dx in x. Then the increase dA in A, calculated as y times dx, is given as dA = y dx. 
This has the useful idea that it is based on a link between the embodied action of drawing and the 
formal definition of continuity.   (Wow!) 

But on the negative side there are concerns about the meaning.  (Uhu!) 
The horizontal stretching clearly changes the visual area of the strip width dx, height y. But if the 
product y dx is interpreted as a number then this remains unchanged. This clearly signals the need to 
realise that there are (at least) two distinct interpretations of the calculus. One involves the variables 
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as numbers, the other involves the variables as quantities with dimensions, such as time, length, area, 
volume, velocity, mass, temperature, density, pressure, national debt, share value, and any other 
measurable quantities that arise in applications. 
In addition, there is still the question about the exact meaning and value of dA being precisely equal 
to y dx. 

Levels of Sophistication in Calculus and Analysis 
To respond to this, we need to look at the bigger picture. 

I suggest that CALCULUS has two successive levels of sophistication. One is the 

Practical level that involves visual representation and symbolic calculation, in which a 
process approaches a limiting value. 

Then there is the 

Theoretical level that involves informal definition and deduction, focusing on the limit 
object itself. 

ANALYSIS, on the other hand, is based on 

Formal mathematics, using set-theoretic definition and formal proof. 

Users of Calculus essentially only encounter practical or theoretical mathematics, which involve 
visual and symbolic aspects. Practical mathematics involves coherent ideas that fit together. 
Theoretical mathematics introducing more coherent forms of reason, where specific assumptions 
have necessary consequences. 
 
Human perception and action involve more than visual input. More broadly, they involve a wide 
range of perceptual senses and forms of action and reason that I term Embodiment. This is physical 
and mental, visual and gestural, and includes mental thought experiments. 
Symbolism involves calculation, compressing processes in time as operational symbols that can be 
mentally manipulated as objects, where the symbols have multiple meanings. 
The Practical limit is a process that gets as close as is desired. 

The Theoretical limit is the limit object. 
Embodiment suggests the limit is visually attained.  (Wow!) 

Symbolism suggests that the limit is not attained.  (Uhu!) 

Cultural aspects of mathematics 
Mathematics arises in different cultural settings. I build my framework on the insight of 
mathematician Raymond Wilder who used the anthropological term ‘culture’ to study the evolution 
of mathematical concepts. 

He wrote: 

[A culture is] a collection of customs, rituals, beliefs, tools, mores, and so on, called cultural 
elements, possessed by a group of people who are related by some associative factor (or 
factors) such as common membership in a primitive tribe, geographical contiguity, or 
common occupation. 
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He used a number of anthropological terms: 
• Cultural stress involves a need in the community that requires to be resolved 

• Cultural diffusion refers to moving cultural elements between cultures 

• Cultural lag acknowledges that diffusion takes time 

• Cultural resistance occurs when a community opposes diffusion. 

To these I add a positive heading to balance the negative notion of resistance: 
• Cultural stability involves maintaining a culture that seems to be working. 

How do these cultural aspects affect calculus? 
In the calculus we have: 

• Stress from different needs in different communities 
• Stress from fast changing digital technology 

• Cultural lag in transmitting new ideas to communities that may not even be aware 
of them 

• Resistance to new ideas competing with stability 
A major cultural factor is the conflict between cultural stability, and changing need, which 
underlies the so-called math wars. 
Pure mathematicians seek formal proof. Users require theoretical mathematics involving limit objects 
or practical mathematics involving limit processes. The plan is top-down, the learning is bottom up 
(Figure 9). 

 
Figure 9: Directions of planning and learning 

How does this relate to How Humans Think Mathematically? 
To gain insight into how we think mathematically, it is first useful to understand how we interpret 
what we see (Figure 10). 
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Figure 10: The structure of the eye 

On the left is a cross section of the eye looking from above with the pupil at the bottom and the back 
of the eye at the top. On the right is a view of the central part of the back of the eye as seen through 
the pupil which includes an area called the macula, about 5.5 mm across. This recognises visual 
detail. 
In the centre of the macula is circular region called the fovea. This recognises high resolution colour 
and detail through cells called cones. There are around 200,000 cones and the fovea is only about 250 
cones across. We will see that this has a profound effect on how we read symbols and how our 
eyes follow moving objects. 
When we read text, the eye stops for a brief fixation to take in information through the fovea and 
shifts between fixations in jumps called saccades. Read the words on this page to get a sense of how 
your eye jumps in saccades and stops momentarily in fixations. 
Do this now, so that you have a sense of what I am talking about … 

Reading mathematical expressions 
Expressions are read in many languages left to right in chunks. 
For instance, this expression  

1 + 2 × 3 
is read as one plus two times three. 
The meaning depends on the spoken articulation. If I leave small gaps between symbols, then the 
meaning can be made more precise. Here I use three dots (an ellipsis …) to denote a brief gap in 
speech so that “1 + 2 … times 3” means that I say “1 + 2” (which is “3”) then, after a gap (…) I say 
“times 3”. In this case, 

“1 + 2 … times 3” is 3 times 3, which is 9. 
Meanwhile, 

“1 + … 2 times 3” is 1 plus 6, which is 7. 
Once this meaning is understood, the distinction can be written symbolically using brackets as (1+2) 
× 3 and 1 + (2 × 3). 
This leads to: 



 

 

 27 

The Articulation Principle: The meaning of a sequence of operations can be expressed 
by the manner in which the sequence is articulated. 

This Principle of Articulation can be used at any level to give meaning to the use of brackets. It is not 
a mathematical definition, but it does lead to meaning for the use of symbolic operations throughout 
mathematics. 

I have been developing this idea in recent years in invited papers that are available in draft form from my 
academic website: (http://homepages.warwick.ac.uk/staff/David.Tall/downloads.html) where they are listed 
from Tall 2017a to Tall 2020a. For details interpreting operational symbolism, see, for example, Tall, 2020a, 
pp. 10–13. 

These represent a continual theoretical development with much in common, but each one is written afresh 
for different audiences. I am currently working on an overall paper devoted to calculus. When completed, it 
will be added to my academic website downloads page. 

How does the eye and brain perceive motion? 
To follow a moving object, the mechanism of the eye again works in saccades and fixations. Reading 
text involves a succession of fixations to read information in chunks separated by quickly jumping 
saccades. Following a moving object happens in a different way. There is an initial saccade to fix on 
the object and then the fixation moves smoothly to follow the object. 
Place your finger in front of you and move it to the left and right. The eye makes an initial saccade to 
focus on it, then moves in a smooth fixation to follow it. This will happen if you move your head or 
keep your head still and just turn your eye. 
Try this out for yourself, moving your head or keeping it still, to see how you focus smoothly on your 
moving finger while the background is blurred. 

Do this now to sense how it happens … 
Now imagine two points on a number line, one fixed, one moving (Figure 11). 

 
Figure 11: Variables and constants 

In the presentation, the moving point is animated to move towards the fixed point, to encourage the 
viewer to imagine a variable point moving towards a fixed point. This reveals the idea that the brain 
naturally imagines constants and variables, including quantities that can become arbitrarily small. 

The intuitive foundations for calculus are built into the human brain. 

Zooming in on a curve on a retina screen 
Looking back at the original picture from the 1933 text of Durell and Robson, it becomes evident that 
looking at this picture gives no sense of the local slope of the graph. Indeed, if one magnifies part of 
the picture, this simply thickens the lines. Figure 12 shows the original picture magnified in a box 
where the box remains the same size and the picture is magnified within it. 
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Figure 12: Magnifying a physical picture in a book 

Scaling on a retina display can be programmed to maintain the thickness. (Figure 13). 

 
Figure 13: Magnifying a curve on a retina display 

Highly magnified the graph looks like a straight line. By maintaining the thickness of the curve in the 
visual representation, the viewer can now see that the graph is locally straight. This changes the focus 
of attention from the practical limit which approaches the limit object to the theoretical limit which 
is the limit object. 

The notion of local straightness relates directly 
 to the structure and operation of the human eye! 

Using a retina display, the practical slope function stabilises on the theoretical slope function. 

This gives a visual embodiment supporting local straightness which switches attention from 

The practical limit as a process that gets as close as is desired 

to 

The theoretical limit which is the derivative as a limit object. 

It gives meaning to the derivative as a theoretical object. 

So, we must ask the fundamental question: 
Why is local straightness rejected in AP calculus? 
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Cultural resistance over the centuries still operates today 
A reason for the persistence of the traditional approach to the calculus (starting from an informal 
version of the modern definition) may lie in the desire for cultural stability and its consequent cultural 
lag and cultural resistance. New forms of technology provide radical changes communication, 
operation and imagination that cause great cultural stress by changing faster than current communities 
can cope. 
This is a natural feature of the evolution of ideas as new generations build on the developments of 
earlier generations. Today we still have the vestiges of earlier beliefs that act as obstacles for change. 
For example, consider the following Greek common notion: 

This is self-evident for counting objects or measuring figures. 
But Galileo was found guilty of heresy for suggesting that the whole numbers are in one to one 
correspondence with the squares of whole numbers. 

Cantor realised that this property is the definition of an infinite set. 
This was met with hostility and cultural rejection and led to his mental breakdown. 

I pose the question: 
Is this is happening in Calculus today?  

The meaning of infinitesimals 
Let us consider the formal theorem: 

This is self-evident for counting objects or measuring figures. 

It implies there are no infinitesimals in the real numbers. 
However, it does not imply that there are no infinitesimals on a number line … 

… just as there are no irrationals on the rational number line. 
I can prove to you that infinitesimals must occur in any ordered extension field of the real numbers. 

Let K be any ordered field with ℝ as an ordered subfield. Define an element x in K to be 
finite if it lies between two real numbers, a and b … 
… and to be infinitesimal if x is non-zero and lies between –t and t for every positive real 
number t. 

Then we can prove the following structure theorem: 

The proof is a simple application of the completeness axiom.   

Structure Theorem: Any finite element x in K must either be in 
ℝ, or of the form c+ε where c is in ℝ and ε is an infinitesimal. 

Greek Common Notion 
The whole is greater than the part 

Theorem 
A complete ordered field cannot contain infinitesimals 

Structure Theorem: Any finite element x in K must either be in 
ℝ, or of the form c+ε where c is in ℝ and ε is an infinitesimal. 
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Call elements in K, ‘quantities’, and elements in ℝ, ‘constants’. 
Then we have the following Theorem: 

 

For finite x, the unique real c is called the standard part of x, written st(x). 
To see infinitesimal detail, we magnify the scale by defining the ε-lens pointed at c for any c and non-
zero ε to be 

m: K→K such that m(x) = (x– c)/ε. 

This magnifies the line by an infinite factor 1/ ε focused on the point c. 
Define the field of view of m to be the set V such that (x – c)/ε is finite. 

The optical ε-lens pointed at c is µ: V → ℝ given by 
µ(x) = st((x –c)/ε) 

 

I introduced the notion of optical lenses in Tall (1982b). I proved the Structure Theorem for Infinitesimals in 
the form given here for an undergraduate course. I never published it as a mathematics paper because I 
considered it a simple exercise using the completeness axiom. When Ian Stewart and I wrote new editions of 
Foundations (1977) and Complex Analysis (1983) in 2014, 2018 respectively, we incorporated chapters on 
real and complex infinitesimals using this Structure Theorem. It is now an essential link between formal 
mathematics and more sophisticated forms of embodiment and symbolism.  

This gives a map from the field of view V on the extended number line K to the real number line. 
When ε is an infinitesimal (in which case the ε -lens is also called an optical microscope) the original 
elements c, c + ε, c + 2ε, …, in K differ by infinitesimal quantities, but their images on the real line 
are visibly distinct. So, we can now ‘see’ infinitesimal differences under infinite magnification factor 
1/ε (Figure 14). 

 
Figure 14: Optical ε-lens 

However, c + ε and c + ε + 2ε2 differ by 2ε2 and the optical lens maps them to the same point. 
Further details are available in the second edition of Foundations of Mathematics (2014) written 
jointly with Ian Stewart and, in more detail for real and complex analysis in our joint Complex 
Analysis (2018). 

Any finite quantity is either a constant 
or a constant plus an infinitesimal. 
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Furthermore, the ideas apply in two or more dimensions, simply by using optical lenses on each 
component. An optical lens in n dimensions can use different magnification factors on each 
coordinate. 

For example, the magnification factor 1/ε can be used on both coordinates to see local straightness of 
a differentiable function (Figure 15). 

 
Figure 15: Local straightness of a differentiable function 

A horizontal magnification of 1/ε and a vertical magnification of 1 can be used to see local flatness 
of a continuous function (Figure 16). 

 
Figure 16: Local flatness of a continuous function 

In both this pictures, I have taken the liberty to denote the image µ(s,t) for (s,t) in V by the  same 
symbol (s,t) in ℝ, even though the original coordinates s,t are in the field of view in K and the image 
coordinates are real numbers. This is a long-standing convention in making maps where we denote 
the image of, say, New York, on a map by the name ‘New York’. In the same way, when we draw a 
map, we only represent certain level of detail appropriate for the scale of the map. 
The picture of local flatness (figure 16) appears here in this form for the first time. Other details can 
be found in chapter 13 of How Humans Learn to Think Mathematically (Tall, 2014). 
Optical lenses arise in Formal Mathematics. They are included here to show formal mathematicians 
that infinitesimal ideas are a fully valid part of formal mathematics. 

In my presentation, I did not have time to elaborate on important ideas presented in the second edition of 
Complex Analysis, chapter 15, where I put forward the argument that thinking of infinitesimals as ‘arbitrarily 
small variables’ is more productive than using formal optical lenses. The reason for this arises in dealing with 
polar coordinates where small increments dr in r and dθ in θ give a small approximate rectangle with side 
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lengths dr and rdθ. Using optical lenses it is not possible to simultaneously magnify the infinitesimal shape 
with sides dr and rdθ while also including the origin, when it is a finite non-zero distance r away. However, 
it is easily possible, in the mind’s eye, to imagine a picture of the plane with the origin and the tiny shape in 
the same picture and then to zoom in on the shape to see it look like a rectangle. (This could also be 
represented appropriately on a retina display.) For this reason, applied mathematicians use an embodied 
human version of the calculus to make sense of arbitrarily small changes. 

I also did not have time to respond to the claim that local straightness is inappropriate for calculus based on 
the idea that, when applied to polar coordinates, it no longer works. This arises from different views of the 
meaning of a graph in the plane, as to whether it is a two-dimensional object in ℝ2, or a set of ordered pairs 
in ℝ×ℝ. This confusion has lasted for centuries and it continues today in the distinction between y being a 
function of x in ℝ×ℝ and the notion of covariation between variables x and y in ℝ2. Both are valid, but with 
very different meanings. It has taken me many years to understand this, although there are vestiges of the 
distinction in my published writing. Back in 1977, in the first edition of Foundations, in a section written by 
Ian Stewart, there is an explanation of the notion of a function f : ℝ→ℝ which begins with two copies of the 
number line ℝ and then turns the second number line round through 90° with the arrow going from a point 
on the horizontal x-axis to the vertical y-axis being redrawn to go vertically from the point x to the height y 
and turning through a right angle to end up on the vertical axis at a height y. The relationship between x and 
y is then represented by the graph of points of the form (x, y) as (x, f(x)). Local straightness applies to this 
interpretation. 

The notion of co-variation involves x and y varying together, with a relationship between the two. This can 
be considered as a change occurring in time. In this interpretation there is a hidden parameter t. It doesn’t 
matter how fast t changes, as long as it goes in the same direction. This is related to Newton’s idea of fluxions 
where variables change in time. Leibniz, on the other hand, essentially saw the curve as an object that was 
made up of an infinite number of infinitesimally short sides. 

As individuals with different genetic inheritance and different previous experiences, we all develop different 
knowledge structures. Mine, as a Grammar School boy and an Oxford undergraduate and graduate, caused 
me to see the graph as a relationship relating the independent variable x to the dependent variable y. I saw the 
relationship as one-way and could not grasp the idea of balanced co-variation, because I believed that y varies 
as x varies, but not the other way round. 

In dealing with implicit functions I was faced with a dilemma. I found the loose way that English text books 
dealt with a relationship such as x2 + y2 = 1 to ‘differentiate with respect to x to get 2x + dy/dx = 0, and so 
dy/dx = –2x was, to me, unsatisfactory, because y is not a function of x in the previously defined sense. So, 
in designing the calculus curriculum for the School Mathematics Project, I began by introducing a 
parametrisation, in this case x(t) = cos(t), y(t) = sin(t) for 0 ≤ t ≤ 2π, to calculate dx/dt, dy/dt, where (dt, dx, 
dy) is the tangent vector in 3 dimensional (t, x, y) space. This is an alternative way of conceiving x and y as 
being co-variant in ordered time t, so that co-variation now makes sense to me. Local straightness still applies, 
but now it is in three dimensions. In fact, it naturally generalises to the multi-dimensional case, but that is 
another story. 

Strangely, I now see Einstein, entering the picture that was imagined by Newton. Einstein lives in four-
dimensional spacetime with three-dimensional space and a fourth time dimension that is directional and only 
operates in that one direction. In such a world view, co-variation is a natural concept: x and y co-vary in a 
particular direction in time. In our imagination we can see time as a video, say of a train travelling in reverse, 
then we play the video backwards to see the train travelling in a forward direction. Our imagination goes 
beyond our real-world experience. 

Different viewpoints are enormously valuable. They enable us to see possibilities beyond our own personal 
experience. I have in recent years had the scales removed from my eyes to see such possibilities, but I still 
sense we need to stand above the differences to question our own views and to seek profound underlying 
patterns. 

We can learn by reflecting deeply on serious data produced by various studies in a range of different areas of 
expertise. For example, the report on Insights and Recommendations from the MAA National Study of College 
Calculus by Bressoud, Mesa and Rasmussen (2015) can be downloaded from the internet at 

https://www.maa.org/sites/default/files/pdf/cspcc/InsightsandRecommendations.pdf 

and contains a wealth of detailed information. 
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Analysing the data from viewpoints in this presentation – including personal brain structure and operation, 
corporate cultural aspects and the long-term development of mathematical thinking – gives new ways of  
forming a coherent overview that reflects the realities of how we think mathematically, and how our cultural 
evolution affects our teaching, learning and thinking about calculus. 

The question is: given the cultural pressures to maintain cultural stability in the face of cultural resistance, 
how is it possible to move ahead? My proposed solution in recent papers is, first to introduce principles such 
as the Principle of Articulation to give meaning to symbolism while linking embodiment and symbolism. 
Then I have analysed the changes in context throughout the curriculum to identify those aspects that remain 
supportive over several changes. These can give a longer-term sense of stability allowing the learner to reflect 
on those changes that are problematic so that they can be addressed meaningfully at the time that they arise. 

But will it happen? This is not in my gift. 

Reflections 
I have included the notion of optical lenses to show that they justify the notion of infinitesimals on a 
number line using formal mathematical theory. However, this theory belongs in formal mathematics 
using the axiom of completeness, not in the practical or theoretical levels of sophistication of calculus. 
The idea of optical magnification can be visualized in Practical Embodiment in any program that 
allows embodied scaling on each coordinate. This is possible in GeoGebra. 
 

The original TI-92 graphic calculator allowed zooming in with differing scale factors, based on my advice to 
the company, but this is not used in any curriculum as far as I know. The current implementation in GeoGebra 
allows magnification of the plane by moving finger and thumb apart and has the possibility of stretching 
horizontally by stretching the horizontal axis. In the version I have seen, it needs reprogramming to allow 
horizontal stretching when the horizontal axis is not in the picture. 

I understand that currently there is competition between GeoGebra and the software Desmos for the larger 
market share. The GeoGebra interface operates on the picture itself to stretch it in various ways while Desmos 
prefers to use sliders to alter parameters. Desmos has the advantage of a broader classroom environment in 
which all the students work on their own smart phone, iPad or computer, connected using wi-fi. It is then 
possible to display the screen of any student on the teacher’s main display to encourage class discussion. 
Desmos is therefore smarter in providing an environment for formative assessment of how different students 
are progressing as compared to the summative multi-choice tests currently used in AP Calculus. 

Stretching graphs on a retina display supports the notion of infinitesimals as variable quantities as 
envisaged in mathematical applications and also as visualised naturally by the human eye and brain. 
Infinitesimals can be imagined as processes in practical mathematics and embodied as objects in 
theoretical mathematics. They make sense as ‘arbitrarily small quantities’ in applied mathematics. 
In my presentation I focused on how we think about Calculus, in particular the roles of Embodiment 
and Symbolism. Embodiment includes how our brain makes sense of dynamic change, speaking and 
reading text and mathematical expressions, translating these human activities into operational 
symbolism. This symbolism involves embodying change through operations symbolised as mental 
objects that can themselves be operated on at a more sophisticated level. 
I have identified three significant levels of sophistication: 

• Practical limit processes 
• Theoretical limit objects 

• Formal limit definitions and proof 
In the learning and teaching of these ideas, I propose that we build up to the limit concept through 
practical and theoretical experiences, not down from a formal definition, as yet unknown to the 
learner, presented in a manner that focuses on a process that seems unfinished. 
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In the limited time available, I did not include essential parts of my broader framework which 
incorporates affective aspects of mental activity, including confidence, anxiety and so on that are 
included in chapter 5 of How Humans Learn to Think Mathematically (Tall, 2013). 
There I built on earlier work of Skemp, based on Freudian psychology where he formulated a theory 
of goals (to be desired) and anti-goals (to be avoided).  
A goal that one believes is achievable is accompanied by a feeling of confidence, which may change 
to frustration if it proves subsequently to be difficult to achieve. Frustration sensed by a confident 
person is likely to act as a positive encouragement to redouble the effort to achieve the goal. Moving 
towards a goal gives pleasure and moving away from it gives unpleasure—a term used in Freudian 
analysis to denote the opposite of pleasure.  
Coping with an anti-goal is quite different. According to Skemp, an anti-goal that one believes one 
can avoid gives a sense of security but, when it cannot be avoided, the emotion turns to anxiety. 
Moving towards a goal instils a sense of fear, while moving away gives relief.  
This theory is represented in figure 17 (which I drew in Tall, 2013, p.120) where arrows represent 
movement to or away from a goal or anti-goal and smiling or frowning icons represent the belief 
related to the ability to achieve a goal or avoid an anti-goal. 

 
Figure 17: Emotional reactions to goals and anti-goals 

This reveals the vast difference between positive emotions of confidence and pleasure relating to 
goals that are considered achievable and emotions relating to anti-goals which offer, at best, a sense 
of security and relief and, at worst, a sense of anxiety and fear. 
Since 2013, I have studied the literature on neurophysiology more closely, comparing its studies of 
fMRI scans which only note changes over a period of two seconds or so, as compared with what can 
be observed in a classroom by an observer familiar with the structural operation of the brain. In 
particular, I have taken great interest in the operation of the limbic system which links to automatic 
body regulation and operates quickly before the frontal cortex can make a considered decision. Here 
the mathematician and neuroscientist Stanislaus Dehaene has provided some very interesting data 
recording the parts of the brain that respond to various forms of mathematical thinking and suggests 
that the brain recruits areas related to handling of number and shape and space to think mathematically 
that are not related to areas involved with language. 
Without language there would be no sophisticated mathematics, for it is in naming ideas that we can 
begin to think about them and communicate them in increasingly sophisticated ways. However, as 
human beings our brains develop specialised functions that we pass on to later generations, 
accumulating mathematical knowledge. This relates to our natural abilities to repeat sequences of 
actions and to name operations using operational symbolism, leading to a compression of knowledge 
where the symbols become mental objects that can themselves be operated upon. 
The question of meaningful and rote learning can now be considered in a different light. If rote-
learning is prioritised over making meaningful links, then, in the long term, the compression of 
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knowledge is less likely to occur in ways that enable more sophisticated levels of mathematical 
thinking. 
Cultural stability operates to preserve those aspects which are considered to be important. But does it 
serve us well in the long-term? 

I have proposed the need to think about cultural resistance 
that may impede our progress. 

This requires a reflection on the subtle aspects that underpin our personal thinking. I seek a deeper 
simplicity in my life. I have a few more years on this earth and I wish to spend it in quiet 
contemplation and have no desire to become involved in emotional disputes. I do welcome any 
comments that cause me to rethink my position as this can help me improve my understanding. 
Meanwhile, I encourage the participants to enjoy the conference, but do not forget to dream! We have 
new tools to make more sense in the future, so use them wisely. In a time when we have a wealth of 
technology to support our human thinking, remember the words of Richard Buckminster Fuller: 

You never change things by fighting the existing reality. To change something, build 
a new model that makes the existing model obsolete. 

 
Figure 18: Build a new model that makes the existing model obsolete 

Today we have technology for computation, symbol manipulation, interactive retina graphics and a 
verbal interface using a version of artificial intelligence. The evolution of ideas goes on into the future. 
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Abstract 

I describe a calculus curriculum (from Project DIRACC)2, based in quantitative reasoning, that puts 
the FTC at its center. It builds from the ideas that differentials are variables whose values vary and 
that rate of change and accumulation are two sides of a coin. I will share results from comparisons 
with traditional curricula, surprising insights into different meanings of rate of change students must 
have at different places in the curriculum, and the central role of technology in making this approach 
possible. 

Introduction 
Popular U.S. calculus textbooks state the Fundamental Theorem of Calculus (FTC) as: (1) If a 
function f is continuous over the interval [𝑎, 𝑏], the function F defined as 𝐹(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡3

N  is an 
antiderivative of f, and (2) If G is an antiderivative of f, then ∫ 𝑓(𝑥)𝑑𝑥O

N = 𝐺(𝑏) − 𝐺(𝑎). To make 
these statements meaningful, authors build meanings of derivative, antiderivative, and definite 
integral prior to stating the FTC. But these textbooks’ meaning for derivative is slope of a tangent 
line. Their meaning for integral is area of a region bounded by a curve. The net result is the FTC, in 
students’ experience, is nothing more than a way to compute definite integrals. It adds nothing to their 
understanding of derivatives or integrals. Derivatives are still slopes and integrals are still areas, and 
the FTC says nothing about either. 

The standard statement of the FTC is not true in general when integrals are areas and derivatives are 
slopes. The integral ∫ 𝑓(𝑥)𝑑𝑥O

N  gives the area of a region bounded by x=a, x=b, and y = f(x) only 
when y and x are ordinate and abscissa in a Cartesian coordinate system. It doesn’t work in any other 
coordinate system. Also, in a polar coordinate system, the graph of 𝑦 = 𝑚𝑥 + 𝑏 is a spiral, not a line, 
making derivative as “slope of a tangent” unworkable. As I will clarify later, integral as accumulation 
from rate of change and derivative as rate of change of accumulation are not dependent upon a 
coordinate system. 

The strong tie between integrals, derivatives, and the Cartesian coordinate system creates 
epistemological obstacles for students just as does tying fractions to pieces of a pie. It gives students 

                                                
1 Research reported in this article was supported by NSF Grant No. DUE-1625678 Any recommendations or conclusions 
stated here are the author's and do not necessarily reflect official positions of the NSF. 
2 Developing and Investigating a Rigorous Approach to Conceptual Calculus, P. Thompson (PI), F. Milner (co-PI), M. 
Ashbrook (co-PI). http://patthompson.net/ThompsonCalc  
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meanings for derivatives and integrals that do not generalize and, in fact, create obstacles regarding 
their application of integrals in non-area settings and rate of change in non-slope settings. Why, then, 
do textbook authors make the tie between the Cartesian coordinate system and initial ideas of 
derivatives and integrals so strongly? In my opinion, it is because it allows authors to pretend they 
are teaching ideas of calculus to students and it allows students to pretend they are learning ideas of 
calculus. 

My goal is that students understand a calculus that is about more than lines, areas and pseudo-
connections with quantitative situations. It is that students understand a calculus that arises from their 
reasoning about quantities and relationships among quantities. To do that, however, requires they 
reason about quantities and generalize their reasoning. More specifically, I wish students’ 
comprehensions of phenomena to entail ideas of calculus they then represent symbolically. 

The aim that students’ calculus be rooted in their reasoning about quantities requires me to 
differentiate between what Les Steffe and I called students’ mathematics and a mathematics of 
students (Steffe & Thompson, 2000). Students’ mathematics is the mathematical reality they 
experience, which is wholly theirs and is unknowable to us in the same way dark matter is unknowable 
to us. Like with dark matter, the best we can do is make models that fit observations and are consistent 
with other models. We then use models of students’ mathematics and its development (our 
mathematics of students) to inform our design of instruction and curricula. The calculus I share here 
arose in that way – from a career of creating models of students’ mathematics and its potential for 
developing into powerful ways of thinking mathematically. 

(More here later that explains the themes in the diagram below—how quantitative reasoning can 
provide the backbone for a mathematics of students throughout their schooling.) 

 
 

The FTC, quantitatively 
To design a calculus that students might create from reasoning about their worlds quantitatively 
requires that we define our learning goals in these terms. For students to see the FTC as relating rates 
of change and accumulations students must conceptualize rate of change as a relationship between 
quantities whose values vary.  

A particular scheme for constant rate of change of one quantity with respect to another is the earliest 
form of the FTC learned by some middle school students (and not possessed by some calculus 



 

 

 40 

students). It entails an image of two quantities varying simultaneously so that increments in each are 
in constant proportion and accumulations of each are in the same proportion. I described this scheme 
in several earlier publications (Thompson, 1994a, 1994b; Thompson & Thompson, 1992).  

Several aspects of holding this scheme warrant comment. The scheme, called FTC-E(arly), entails 
this imagery: 

1) “Same proportion” means same relative size of measured quantities.  
2) It is accumulations of quantities that vary. To a student holding the FTC-E scheme, variation 

implies accumulation. 
3) Variation in an accumulation happens by its increments. 
4) A student can envision increments happening smoothly or “chunkily” (Castillo-Garsow, 

Johnson, & Moore, 2013; Saldanha & Thompson, 1998; Thompson, 1994b; Thompson & 
Carlson, 2017). Envisioning increments happening smoothly is more advanced. 

Aspect 3, variation-implies-accumulation, is a crucial component of the FTC-E scheme. Imagine a 
person running. If you imagine the runner’s distance scaling to a larger size, like an arrow becoming 
longer, you are not imagining distance accumulating. It is just becoming larger. To envision the 
runner’s distance accumulating one must envision the distance covered by each stride added to the 
runner’s distance traveled up to that stride. In this image, the runner’s accumulated distance increases 
with each stride. It is in this way that someone envisions variation in an accumulation happening by 
its increments. 

Aspect 4 distinguishes, in principle, between two ways of envisioning how a quantity’s value varies. 
There is a distinct difference between a student imagining a runner’s distance accumulating chunkily 
and a student imagining it accumulating smoothly. The first student imagines the length of a 
completed stride being added. The second student imagines the length of a stride in progress. This 
distinction is important when students face the problem of modeling accumulation symbolically while 
taking the independent variable as varying continuously. 

A far more advanced scheme, called FTC-A(dvanced), gives a later form of the FTC. A student 
holding the FTC-A scheme coordinates advanced schemes of variation, covariation, and constant rate 
of change in support of this imagery: 

1) Two quantities vary (accumulate) smoothly and simultaneously. 
2) They each vary in increments which themselves vary smoothly. 
3) Increments can be small enough so, no matter how the accumulations vary, they covary 

through increments at an essentially constant rate of change with respect to each other. 
4) The rate of change of the accumulations with respect to each other is the rate of change of 

their increments with respect to each other. 

The first two aspects of FTC-A entail the idea of function as a relationship between covarying 
quantities. The third aspect of FTC-A entails the idea of rate of change function—a function whose 
values give the rate of change of an accumulation at each moment of accumulating. The fourth aspect 
of FTC-A is where the relationship between accumulation and rate of change is explicit. Seeing the 
rate of change of an increment as the rate at which an accumulation varies with respect to another 
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quantity is the conceptual heart of the FTC. It is the conceptual equivalent of understanding that an 
integral’s rate of change function is the integrand of an indefinite integral.  

The fourth aspect of FTC-A is nontrivial for calculus students. Figure 1 contains an item from Project 
DIRACC’s Calculus 1 Concept Inventory given to 380 students enrolled in traditional or engineering 
calculus. It aims to have students consider an accumulating distance’s rate of change when given 
information about the overall accumulation (the car’s average rate of change over a four-hour period) 
and its rate of change over a small increment of time after that four-hour period.  

A car left from San Diego heading to New York. The car’s average speed for the 
first 4 hours of the trip was 52 mph.  In the next 0.003 hours, the car had an average 
speed of 71 mph.  Which is the best estimate of how fast the car's distance from 
San Diego was changing at 4 hours after leaving San Diego? 

Figure 1: FTC item from Calculus 1 Concept Inventory (© 2018 Arizona Board of Regents) 

Options presented to students are below. Comments in brackets are explanations to you.  

(a) 52 mph [miles per hour; the car’s average speed over the first four hours] 
(b) 52.014 mph [the car’s average speed over 4.003 hours] 
(c) 61.5 mph [the mean of 52 and 71] 
(d) 71 mph [the car’s average speed over the 0.003 hours immediately after the four-hour period] 
(e) Cannot determine [There is insufficient information to answer the question] 

Table 1 shows students responses to the item in Figure 1. While no option garnered a high percentage 
of responses, it is worth noting that 71 mph, the best approximation to the car’s speed at an elapsed 
time of four hours, was the least popular option (13.1%). It is also worth emphasizing that 71mph is 
the only option consistent with FTC-A, aspect 4. 

52 mph 
52.014 
mph 

61.5 mph 71 mph 
Cannot 

determine 
No 

Answer 

24.4% 17.7% 26.2% 13.1% 16.2% 2.3% 

Table 1: Responses to item in Figure 1 from 380 calculus students 13 weeks into a 15-week semester 

DIRACC Calculus 
Traditional, semester-based, university calculus in the U.S. is called Calculus 1, 2, and 3. The content 
of Calculus 1 traditionally covers differentiation and applications up to optimization and related rates 
and integration up to the FTC and elementary applications of integrals.3 The content of Calculus 2 
traditionally covers a potpourri of disconnected topics: advanced antidifferentiation and applications 
of integrals, parametric functions, sequences and series (including Taylor series), and polar 
coordinates. Calculus 3 covers multivariable and vector calculus. 

                                                
3 This is also the content of traditional Advanced Placement Calculus BC many students take in high school. 
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The DIRACC curriculum covers the content of semester-based Calculus 1 and 2. However, we strived 
to make it grounded in quantitative reasoning and to develop ideas more coherently than traditional 
calculus. The coherence we aimed to create rests on what I call Foundational Problems of Calculus: 

FP-1: You know how fast a quantity varies at every moment; you want to know how much of it 
there is at every moment. 

FP-2: You know how much of a quantity there is at every moment; you want to know how fast it 
varies at every moment. 

DIRACC Calculus 1 

FP-1 and FP-2 are stated at the outset of Calculus 1 and remain thematic throughout the two courses. 
We anticipated a dialectic between students’ development of their FTC-A scheme and their work to 
understand and respond to FP-1 and then to FP-2. 

DIRACC Calculus 1 has these central features. It: 

• contains a forward-looking review of pre-calculus ideas. 
• aims for students to build meaning and to reason meaningfully (reasoning based on meanings). 
• emphasizes convergence, not limits. 
• defines quantities so their measures are computable. The goal to compute is an organizing 

idea. 
• aims to support students in building dynamic imagery to accompany their construction of the 

FTC-A scheme. 

Thompson, Byerley, and Hatfield (2013) give a detailed account of the organization and content of 
DIRACC Calculus 1 (as of 2013). The current version is at http://patthompson.net/ThompsonCalc. 
In brief, the course evolves in four phases. The aims of each phase are: 

Phase 1: Review  

This is important; most students do not understand basic ideas or hold productive imagery for them. 

• Quantitative reasoning. 
• Values of variables vary; strong distinctions among variables, parameters, and constants: 

o If you use a notation to represent the value of a quantity whose value varies, you are 
using that notation as a variable. 

o If you use a notation to represent the value of a quantity whose value never varies 
(e.g., π or e), you are using that notation as a constant. 

o If you use a notation to represent the value of a quantity whose value is constant within 
a situation, but can have different values across situations, you are using that notation 
as a parameter. 

• Differentials are variables; they are the “bits” by which variables vary 
• Constant rate of change is defined in terms of a relationship between differentials: 𝑑𝑦 = 𝑚	𝑑𝑥 
• Large variations are made of tiny variations. 
• Values of functions covary with their arguments. 
• Emphasis on using function notation representationally. 
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• Functions defined in open form are bona fide functions just as functions defined by formulas. 
• Introduce idea of “essentially equal to”. 
• Conceptualize graphs, coordinate systems, and displayed graphs (the display of a statement’s 

graph within a coordinate system). 

Phase 2: Accumulation from rate of change 

Phase 2 addresses FP-1: You know how fast a quantity varies at every moment; you want to know 
how much of it there is at every moment. 

2.1 Students conceptualize constant rate of change as two quantities covarying so that 
variations in one are proportional to variations in the other (𝑑𝑦 = 𝑚	𝑑𝑥). Indeed, we 
define a differential in a dependent variable only in the context that the two (say, dy and 
dx) are related proportionally—they change at a constant rate with respect to each other. 

2.2 Students represent approximate rate of change functions built from exact rate of change 
functions. 

2.2.1 An exact rate of change function 𝑟U is a function whose values 𝑟U(𝑥) give the rate 
of change of an accumulation function f at each moment of its argument. 

2.2.2 An approximate rate of change function r has values r(x) which are constant over 
intervals of fixed length ∆x and approximate values 𝑟U(𝑥).  

2.3 Students represent approximate net accumulation functions built from approximate rate 
of change functions. Approximate net accumulation accrues over each interval at a 
constant rate; independent variable varies smoothly. The structure of an approximate net 
accumulation function A is: 

Assume the domain of x is partitioned in intervals of size ∆x, starting at x = a.  

For each value of x ≥ a,  

A(x) = (accumulation over complete ∆x-intervals between a and x) 

+ 

(accumulation within ∆x-interval containing current value of x) 

In symbols, this is  

,  

where  is the number of complete ∆x-intervals between a and x, and left(x) is 

the value of the left end of the ∆x-interval containing the current value of x. The 
function called “left” is computed as 

Eq. 1 A(x) = rf (a + (k −1)Δx( )
k=1
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and the function r is defined as .  

It is important I point out that the construction of these function definitions is presented as a problem 
to students–how to actually compute values of functions we define conceptually. 

I should also say that the first term in Equation 1 is not a standard Riemann sum. It has a variable 
upper limit, and it presumes the value of x varies smoothly. A graph of the first term alone (Figure 

2, left side) is a step function—the value of is constant for all values of x 

in  because the value of  (the number of complete ∆x-intervals 

between a and x) is constant within the interval. Second, the graph of A(x) (Figure 2, right side) is 
piecewise linear because the term r(x)(x – left(x)) represents the accumulation-so-far within the ∆x-
interval containing the current value of x, which varies at the constant rate r(x) within the interval. 
The term r(x) in r(x)(x – left(x)) is analogous to option (d) in Figure 1. 

      
Figure 2. (Left) Graph of net approximate accumulation over completed ∆x-intervals as the value of x 

varies smoothly; (Right) Graph of net approximate accumulation over completed ∆x-intervals plus 
partial net accumulation within ∆x-intervals, all as the value of x varies smoothly 

2.4 Students define exact net accumulation functions as approximate net accumulation over 
intervals of size ∆x where ∆x is so small that making it smaller gives no discernable 
improvement in approximations.4 In DIRACC, we represent exact net accumulation in 
open form as  

𝐹(𝑥) = ∫ 𝑟U(𝑡)𝑑𝑡
3
N , 

                                                
4 This approach is motivated by Cauchy’s meaning of convergence, which emphasizes distance between terms instead of 
distance from a limit. This is how we avoid dealing with limits. We speak of convergence and terms being computationally 
indistinguishable from each other. 
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where 𝑟U is an exact rate of change function, the value of x varies, t varies from a to x, 
and dt is a variable that varies through moments of the variable t.5 Definite integrals are 
just specific values of exact accumulation functions: ∫ 𝑟U(𝑥)𝑑𝑥

O
N  is simply F(b).  

2.5 We use the meaning of accumulation function to establish that if f is an (unknown) 
accumulation function with (known) exact rate of change 𝑟U(𝑥), and known value f(a), 
then total accumulation up to the value of x is 

𝑓(𝑥) = 𝑓(𝑎) + ∫ 𝑟U(𝑡)𝑑𝑡
3
N . 

In words, f(a) is accumulation up to the value of a (from some unspecified reference point) while 
∫ 𝑟U(𝑡)𝑑𝑡
3
N  is net accumulation from a to x. Therefore, f(x), accumulation up to the value of x, is 
𝑓(𝑎) + ∫ 𝑟U(𝑡)𝑑𝑡

3
N .  

While the statement 𝑓(𝑥) = 𝑓(𝑎) + ∫ 𝑟U(𝑡)𝑑𝑡
3
N  might look to you like the FTC, it is stated to students 

as a way to represent a complete accumulation function. It is not stated as a relationship between 
accumulation and rate of change. Rather, it embodies the relationship between accumulation and rate 
of change. It is in this way that the FTC becomes present in students’ thinking long before it is stated 
for its full import. 

2.6 “Solve” many applications using integrals by way of integrating an accumulation’s rate 
of change function. Notice: With the aid of a computer program that “understands” 
integral notation, none of these applications require finding an antiderivative. 

Students engage in all of 2.1 – 2.6 with the aid of a computer graphing program (called Graphing 
Calculator) that allows them to type mathematical statements in standard form to define functions, 
evaluate functions, and graph functions. Instructors using DIRACC at other institutions use programs 
like Desmos or Geogebra. 

In Phase 2, we both start with concrete settings to build the mathematical ideas and emphasize 
applications of integrals in physical and social sciences. But none of these applications involve 
finding antiderivatives. Rather, students focus on conceptualizing quantities involved in situations 
and modeling their rate of change with respect to one another. Once they have a quantity’s rate of 
change function, they can represent accumulation of that quantity with respect to its independent 
quantity using open-form integrals—which GC can graph and with which they can evaluate definite 
integrals. (See Appendix 1.) 

Phase 3: Rate of change from accumulation 

Phase 3 addresses FP-2: You know how much of a quantity there is at every moment; you want to 
know how fast it varies at every moment. 

                                                
5 The terms “exact”, “infinitesimal”, “moment”, “essentially equal to”, and ““converges”, have special meanings in 
DIRACC. I’ll explain these in my presentation. 
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3.1 Reconceive “amount” functions—functions whose values give an amount of one quantity 
in relation to an amount of another—as accumulation functions by envisioning the 
independent quantity’s value varying. 

3.2 Connect amount functions to rate of change functions via reconceiving them as 
accumulation functions. For example, if 𝑓(𝑥) = 𝑥G gives the area of a square as it side 
length x varies from 0, then 𝑥G = ∫ 𝑟U(𝑡)𝑑𝑡

3
V  for some rate of change function 𝑟U. 

3.3 Reverse the process developed in Phase 2 to construct a method for deriving exact rate 
of change functions defined in closed form from exact accumulation functions defined in 
closed form. 

3.4  Notice this brings us full circle. In Phase 2 we started with, for example, 𝑟U(𝑥) = 2𝑥 and 
ended with 𝑓(𝑥) = ∫ 𝑟U(𝑡)𝑑𝑡

3
N . In Phase 3 we started with 𝑓(𝑥) = 𝑥G and ended with 

𝑟U(𝑥) = 2𝑥. This means 𝑥G = ∫ 2𝑡𝑑𝑡3
N  for some value of a. In other words, any time we 

find a closed-form rate of change function for a closed-form accumulation function, 
we’ve found a closed form definition for an open-form integral. Notice also that this is 
not yet the “official” FTC—we have not introduced the idea of antiderivative. 

3.4.1 Emphasize representational equivalence: Exact accumulation functions and 
exact rate of change functions can be represented in open form or closed form. 

3.5 Standard derivations of rate of change functions from accumulation functions defined in 
closed form. 

3.5.1 Build a library of closed form definitions of open form integrals (what will 
later be called antiderivatives) 

Phase 4: Applications of Derivatives 

While applications play a central role in Phases 2 and 3, they are more for illustration and for students 
to engage in repeated reasoning with the conceptual methods being developed. Phase 4 focuses 
directly on applications. 

4.1 Standard applications of rate of change functions (continuing the themes of quantitative 
reasoning, variation, and covariation): Related rates, optimization, graphical behaviors 
of functions. 

The role of the FTC in this development 

I hope it is evident that the FTC-E is at play from late in Phase 1 (differentials and constant rate of 
change) and the very beginning of Phase 2 (accumulation from rate of change). It segues to the FTC-
A in the definition of the exact net accumulation function ∫ 𝑟U(𝑡)𝑑𝑡

3
N  and the representation of exact 

accumulation as 𝑓(𝑥) = 𝑓(𝑎) + ∫ 𝑟U(𝑡)𝑑𝑡
3
N . It is restated explicitly as the traditional FTC once rate 

of change from accumulation is developed and the idea of antiderivative as a closed-form equivalent 
to an accumulation function defined in open form is crystalized. 
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The role of technology in this development 

DIRACC calculus would be impossible without the incorporation of the technology we use. The aim 
to make all definitions computable requires something to compute them. Also, defining, and having 
students define, functions in open form only on paper makes it improbable that they think of those 
functions as actually computing values of quantities.  

Defining functions in open form in GC makes them “alive”, just as alive as functions defined in closed 
form, which in turn enhances their capacity to think of open-form definitions as representing values 
of quantities. Our use of technology in DIRACC is in many ways aligned with instrumentalism as 
described by Verillon and its adaptation in mathematics education by Artigue, Drijvers, Trouche, 
White, and others (Artigue, 2002; Drijvers & Gravemeijer, 2005; Trouche, 2005; White, 2019) and 
Heideggar’s idea of turning artifacts into tools by conceiving them as “ready at hand” in goal-oriented 
activity (Winograd & Flores, 1986). 

There is an important aspect to our use, and students’ use, of functions defined in open form. Open 
form definitions are, by nature, more reflective of their meaning. Having students answer questions 
by defining accumulation functions and rate of change functions in open form allows them to think 
more clearly about what they are representing in the situation as they’ve conceived it. For example, 
in traditional calculus courses students spend more time finding an antiderivative in “applying” 
integrals than they do conceptualizing the situation in which the “problem” is embedded. Allowing 
students to answer questions about those same situations by identifying a rate of change and using it 
to define an open-form accumulation function allows them to focus clearly on conceptualizing the 
situation—conceptualizing quantities that compose it and relationships among them.  

(Example: A student is asked to find . He writes . How might he check his 

answer? In DIRACC, he checks his answer by defining  and graphing both 

(his derived rate of change function) and  (the average 

rate of change of f(x) over every interval of length 0.0001 in its domain). When he sees dramatically 
different graphs (Figure 3), he concludes, because he trusts the open form definition of approximate 
rate of change function, that his derived rate of change function is incorrect.) 

 
Figure 3. Graphs of student's derived and open form rate of change functions. 

d
dx
xcos(x ) cos(x)xcos(x )−1

f (x) = xcos(x )

y = cos(x)xcos(x )−1 y = f (x + 0.0001)− f (x)
0.0001
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Comparisons of DIRACC, traditional, and engineering Calculus 1 at ASU 
The mathematics department at ASU, like many U.S. universities, has different “flavors” of calculus: 
Calculus for business majors, life science majors, mathematics and science majors, and engineering 
majors. Business and life science calculus focuses on applications and contain very little concept 
development. Mathematics/Science and engineering calculus are largely identical in topics, but 
engineering calculus holds class three hours per week while mathematics/science calculus holds class 
four hours per week. Within math/science calculus we offered both traditional and DIRACC calculus 
for three years to compare them; DIRACC is now ASU’s calculus for math/science majors. 

In Fall 2015 we compared students’ performance in DIRACC and traditional calculus using an 11-
item pretest at the beginning of the semester, then including the pretest within students’ final 
examination as a posttest. A committee of five people, two teaching traditional Calculus 1, two 
teaching DIRACC Calculus 1, and the department’s director of STEM education, constructed the 
pretest/posttest. No item was included without unanimous agreement that it assessed a central idea in 
calculus and addressed it acceptably (see Appendix 2).  

Table 2 contains results from the pretest and posttest. The pooled t-test for posttest comparison is 
, p < 0.0001. 

 PreTest PostTest 

 Mean StdDev Mean StdDev 

Traditional 
n = 248 

3.18 

1.53 

4.89 

2.45 
DIRACC 
n = 149 

2.98 7.90 

Table 2. Pre-Post Comparison of Traditional and DIRACC Calculus 1. Possible score = 11. 

The construction of two “concept inventories” for semester-based Calculus 1 and 2 was part of the 
National Science Foundation’s charge to DIRACC in their funding award. The Calculus 1 Concept 
Inventory (C1CI) assessed students’ understandings in the areas under the headings Variation and 
covariation, Function, Modeling/Quantitative Reasoning, Structure sense, Rate of change, 
Accumulation, and Fundamental Theorem of Calculus. Examples from each area are presented in 
Appendix 3. Table 3 contains Scheffé comparisons among DIRACC, traditional, and engineering 
calculus students’ scores on the C1CI near the end of their semester. Interpret p-values hesitantly. 
Students taking the C1CI were recruited from each program’s courses with an inducement of $50 
each to participate, so sampling was subject to unknown sources of bias. 

t = 11.853
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Difference Std Error p-Value 

DIRACC vs Engineering 3.95 0.90 0.001 

DIRACC vs Traditional  2.26 1.10 0.13 

Traditional vs Engineering 1.68 0.90 0.18 

Table 3. Scheffé comparisons after significant ANOVA for Calculus 1 Concept Inventory. 

Department-required Derivatives Test 

For as long as anyone in ASU’s mathematics department can remember, the department requires 
Calculus 1 students to pass a derivatives mastery test to pass the course. Students get three attempts 
to pass the test. We were unable to get pass rates from traditional and engineering instructors who 
declined to share them. The department’s undergraduate director did share with us that the overall 
DIRACC pass rate was approximately the same as other programs, and our pass rate on first attempt 
was higher. 

DIRACC Calculus 2 
The above description of the DIRACC Calculus 1 is necessarily sparse. I’d like to spend more time 
describing and exemplifying how the themes developed in Calculus 1 lay a foundation for a coherent 
development of ideas in Calculus 2—which typically stand in splendid isolation from Calculus 1 and 
from each other.  

As I mentioned, traditional Calculus 2 in the U.S. is a potpourri of disconnected topics. My challenge 
for Calculus 2 was to reconceptualize these topics so they are coherent with ideas of accumulation 
from rate of change and rate of change from accumulation and coherent with each other. The idea of 
having students conceptualize differentials as variables was key to developing a coherent Calculus 2. 

The DIRACC approach to quantifying regions bounded by graphs and regions within solids of 
revolution might clarify the power of conceiving differentials as variables. I share these examples 
instead of equally interesting examples from the sciences because so many people ask how area and 
volume are treated in the DIRACC curriculum. 

Quantifying Regions in the Plane Bounded by Graphs 

Computing areas of regions bounded by graphs in the Cartesian coordinate system is the traditional 
context in which integrals are developed. The idea is to sum areas of rectangles with bases on the 
horizontal axis and one vertex on the function’s graph. This development creates a number of 
cognitive difficulties for students, including: (1) Area is always positive, so regions above and below 
the graph must be computed separately. (2) Only definite integrals are addressed; the idea of integral 
as a function is absent. (3) Integral as area makes students wonder how, for example, computing an 
area can answer a question about distance, force, or any non-area quantity. (4) Connections between 
integrals and rate of change are absent. 
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On the other hand, area of a bounded region is a quantity. It should be possible to apply the DIRACC 
approach of accumulation from rate of change to the quantification of a planar region bounded by 
graphs and a spatial region bounded by a surface of revolution.  

Suppose a rectangle has height 3 cm and varying base length of x cm. The rate at which the rectangle’s 
area changes with respect to its base length is 3 cm2/cm. We emphasize to students that even though 
the rate of change of area with respect to base length has the same value as the rectangle’s height, the 
rectangle’s height is not the rate at which area changes with respect to base length. The rectangle’s 
height is 3 cm. The rectangle’s rate of change of area with respect to base length is 3 cm2/cm. They 
are different quantities that have the same value. 

 More generally, the differential dA of bounded area in the Cartesian coordinate system is the area of 
a rectangle of height f(x) and base length dx. When the height of a rectangle is 𝑓(𝑥) and its base length 
varies by dx, its rate of change of area with respect to x has the same value as 𝑓(𝑥) (see Figure 4). 

  
Figure 4. The area of a rectangle with constant height and varying base has a rate of change of area 

with respect to its base equal in value to the measure of its height. 

In DIRACC Calculus 1, we developed that when any quantity has a rate of change function 𝑟U(𝑥), 
net accumulation in f as the value of t varies from a to x is 𝐴U(𝑥) = ∫ 𝑟U(𝑡)𝑑𝑡

3
N . Therefore, net 

accumulated area bounded by the graph of y = f(x), x = a, and x = b is ∫ 𝑓(𝑡)𝑑𝑡O
N . However, the idea 

of “net accumulated area” must mean the quantity is signed area. Over intervals where f(x) is negative, 
area accumulates at a negative rate of change, so net change in area will have a negative measure. 

The fact that the value of f(x) is the rate of change of signed area with respect to x depends on the 
graph being displayed in the Cartesian coordinate system.  In a polar coordinate system, the rate of 
change of area bounded by the graph of r = f(θ) as the value of θ varies is not f(θ). The differential 
for the area of a bounded region in a polar coordinate system is a sector of a circle (see Figure 5). 

 
Figure 5. The differential of area bounded by a graph in polar coordinates is area of a sector of a circle 

with radius f(θ) and angle measure dθ.  
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Since dA, the differential in area, changes at a constant rate with respect to 𝑑𝜃, 𝑑𝐴 = 𝑚	𝑑𝜃. 

Moreover,  when . So, in polar coordinates, . The exact rate of change 

function for area bounded by a graph in polar coordinates is therefore 𝑟Z(𝜃) =
U([)H

G
	and accumulation 

of unsigned area bounded by a graph in the polar coordinate system is . 

Unsigned area is not the same as net accumulated area. Net accumulated area is a signed quantity—
it must have a negative value when the value of the function is negative. However, f(t)2 is always non-
negative. We can adjust to this by multiplying the integrand by the sign of the function’s value, giving 

.  

Quantifying Regions bounded by surfaces of revolution 

In DIRACC we speak of surfaces of revolution and regions they bound rather than speaking of solids 
of revolution. This decision arose from two sources—our commitment to crafting a dynamic calculus 
and interviews with students studying traditional developments of volumes of solids of revolution. 

In traditional developments, students see textbooks proposing to generate solids by revolving a 
bounded region in the plane around an axis, then slicing the solid into pieces whose volumes they 
approximate with disks, washers, or shells. Sometimes textbooks propose to first approximate the 
region with rectangles before revolving so that the revolution itself generates disks, washers, or shells. 

I conducted a Calculus 2 exploratory design experiment in Spring 2017. What this means is I wrote 
just-in-time modules for upcoming topics, asked probing questions during class, and interviewed 
students during office visits and volunteers outside of class. 

My first pass at solids of revolution resembled traditional approaches with a small difference—
treating slices as differentials. What I quickly noticed was that students exhibited what every Calculus 
2 instructor witnesses – students were confused about whether to use disks, washers, or shells in 
setting up their integrals. 

Further probing led me to conclude the root of their problem was in their conceptualization of the 
solid. It was entirely unnatural to think of anything varying within it. It also became evident that 
students did not see a connection between a method they contemplated and the integral’s independent 
variable. I pondered how to address the two issues simultaneously. 

The first modification was to change the metaphor for solids of revolution. Instead of revolving a 
region to generate a solid, I spoke of revolving the graph of y = f(x) about the y-axis or x-axis to 
generate a surface (Figure 6a), pointing out that the surface encloses an empty region in space. I then 
offered the metaphor of “filling” the enclosed region, asking about ways to fill it so we can quantify 
the region (compute an approximation to its volume; Figure 6b and Figure 6c). 

dA = π r
2

2
dθ = π dA = r

2

2
dθ

f (t)2

2
dt

a

θ

∫

A(a,θ ) = sgn( f (t)) f (t)
2

2
⎛
⎝⎜

⎞
⎠⎟a

θ

∫ dt
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Figure 6. Quantifying a region enclosed by a surface of revolution. Method (b) fills the region with 

cylinders having constant base and varying height. Method (c) fills the region with cylinders having 
constant height and varying base. Volume of a blue-edged cylinder is the differential in volume for the 

respective method of accumulation. 

There are three benefits of this approach. First, students distinguish between creating a region in space 
and making a solid. They make a solid by filling an empty shell after they revolve a graph to make it. 
Second, they must decide explicitly which variable (original function’s dependent or independent 
variable) will be their independent variable of accumulation. They can choose either, and their choice 
will determine the kind of cylinders they will use to fill the empty region, which in turn will determine 
the rate of change of accumulating volume with respect to the accumulation’s independent variable. 
Third, they only need to think of two kinds of cylinders—cylinders having constant base and varying 
height, or cylinders having constant height and varying base.6 

In Figure 6b, y is the independent variable of accumulation and the differential of approximate 
accumulating volume is dV = (area of cylinder’s base)dy, which means approximate volume’s rate 
of change function has the same numerical value as the area of the cylinder’s base. In Figure 6c, the 
differential in volume is , which means the accumulating volume’s rate of change 

function is  and volume is . 

Figure 6 (b and c) also illustrates how this approach helps students clarify decisions they must make 
about which variable to use as accumulating volume’s independent variable. If a student chooses (b), 
taking y as the accumulation volume’s independent variable, she will be forced to use  to compute 
inner and outer radii of her cylinders. In this instance, students can avoid this difficulty by using x as 
accumulating volume’s independent variable. The point is that students consider which variable to 
take as their independent variable of accumulation apart from which variable is the original function’s 
independent variable. In the traditional approach, students were unaware that volumes they tried to 
compute had an independent variable. 

Motive for these examples 
I shared this disquisition on signed area in Cartesian and polar coordinate systems and volume of 
regions bounded by a surface of revolution to illustrate the coherence gained across topics by the 

                                                
6 We develop a general definition of right cylinder as any geometric figure having congruent top and bottom lying in 
parallel planes and having sides perpendicular to both. 

dV = 2π xf (x)dx

rV (x) = 2π xf (x) V (a,x) = rva

x

∫ (t)dt

f −1
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thematic attention to quantities and their variation and by casting differentials as variables. Standard 
developments of integrals and derivatives based in static geometric arguments presume a timeless, 
unchanging world from which mathematics derives meaning—a world counter to students’ lived 
experience. This presumption also leads to standard calculus having a strong focus on geometric 
interpretations of definite integrals as areas and derivatives as slopes of tangents at a point.  

I hasten to add that the mathematics students create through school (at least in the U.S.) is their 
accommodation to a mathematics presented as if nothing varies. Variables’ values change by 
substituting one number for another. Students having this conception of variable cannot use letters to 
represent quantities’ values in dynamic settings, which lends to students’ evolving beliefs that 
mathematics is about symbolic rituals. I address students’ felt conflicts between their school 
mathematics and DIRACC calculus in the next section. 

Approximating Integrals and Polynomial Approximations 

(I’m unsure whether to include this discussion. While it extends the other two examples in illustrating 
the coherence of the DIRACC approach, the discussion might add too much to the paper’s length.) 

Students’ Reactions to DIRACC Calculus 
 

Related Work (to be completed) 
(Rosenthal, 1992)(Strang, 1990, 1991)(Macula, 1995) in some ways foreshadow what I’ve said about 
the FTC-E and FTC-A schemes. However, they (1) focus on finding areas under curves, (2) are 
unconcerned with students’ images of variation, and (3) their primary goal is the second form of the 
FTC [F(b)-F(a)]. Moreover, Strang emphasizes change in area by combining static bits 

  

rather than a summation of terms 𝑓(𝑥\)∆𝑥\ – the quantities made by a rate of change over an interval 
of change. 

An explosion of focus on and research on accumulation functions in calculus: 

(Bressoud, 2009, 2011)(Sealey, 2014; Swidan, 2019; Swidan & Naftaliev, 2019; Swidan & 
Yerushalmy, 2015) (Kouropatov & Dreyfus, 2014). Point out that they omit the idea of rate of change 
in their meaning of accumulation. 

Comment on Ely’s (Ely, 2010, 2017) notions of infinitesimals and “smooth continuous” and difficulty 
with building rate of change conceptually from them. 

Image for presentation – change, with prior changes “evaporating” upon next change. 
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Appendix I 
Assignment Sheet for Students: Measuring Energy Consumption7 

Energy is commonly measured in units of Joules (J), which is the work done by a force of one Newton 
when its point of application moves one meter in the direction of the force. The rate at which energy 
is used is known as power. Power is measured in Joules/sec (1 Joule/sec is called a Watt). It is also 
common to measure an amount of energy in kilowatt-hours (kWh), which is the amount of energy 
used when it is used at the rate of 1000 Joules/sec (1000 Watts) for one hour. A megawatt hour is the 
amount of energy used when it is used at the rate of one million Watts (one million Joules/sec) for 
one hour. 

Suppose a city consumes electrical energy on a given day at an approximate rate of r(t), where t is a 
number of hours since midnight and r is defined, in megawatts, as  

, 0 ≤ t 

a) Fill in the blanks in 5 different ways to make this statement true: 

3 Megawatt-hours = The energy consumed at a rate of __________ Joules/sec for __________ 
hours. 

b) Why is it sensible that  is the argument to cosine in this model of the city’s rate of 

electrical energy consumption? (Examine the graph of r.) 

c) Define a function that gives the electrical energy this city will have consumed x hours after 
midnight on a given day. Explain how your function produces a value that is in the desired units. 
Does the value of x have a necessary upper bound? 

d) Approximately how much electrical energy does this city use in a typical day? In a typical week? 
In a typical month? In a typical year? Be sure to state quantity’s units. 

e) This city’s electric utility company charges for electricity at the rate of $0.13 per kilowatt-hour 
for electricity used between 7:00a and 5:00p, and at the rate of $0.07 per kilowatt-hour otherwise. 
What is this city’s electrical bill for one day? 

f) Burning 1 kg of coal produces about 450 kWh of energy. How many kg of coal are required to 
meet the energy needs of the city for one day? One year? 

g) A wind turbine normally generates electricity at a rate of 200 kW. Approximately how many 
wind turbines would be required to meet the needs of this city for one day? One year? 

h) A medium-sized household typically uses about 300-500 kilowatt-hours of electrical energy in 
a month during the fall. Residential consumption is typically about 30% of a major city’s total 

                                                
7 Adapted from Briggs & Cochran, Chapter 6.1, Problem 57. 

  
r(t) = 400− 300cos π

12
(t −5)

⎛
⎝⎜

⎞
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π
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electrical energy consumption in that same period. Approximately how large is this city’s 
population? 

 

Partial Student Response using GC 

 

Challenge 
It is reasonable that this city uses less electricity on weekends than on weekdays. 

a) Define a function that, in your estimation, reasonably models the rate of electricity usage on 
weekends. Explain your definition. 

b) Redefine the overall rate function so it models rate of change of energy usage for any (real) 
number of days since the beginning of some Monday. 

c) Give new answers to the original questions. 
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Appendix 2 
Pretest/Posttest for Comparing DIRACC and Traditional Calculus 1 

1. The function r is the rate of change function with 
respect to time for a particle’s displacement from its 
initial position while it moves in a straight line. The 
graph of y = r(t) is given to the right.  
The function s is the particle’s displacement 
function. Its values (measured in feet) give the 
particle’s displacement from its initial position t 
seconds after starting. At what time, approximately, 
during the first 7.5 seconds does s(t) have its 
smallest value?  

A. 1.2 sec 
B. 3 sec 
C. 5.4 sec 
D. 7 sec 
E. None of the above 

2.  A company produces different sized smartphones with rectangular screens.  The screen's 
dimensions are w and h, where the height (h) is half the width (w) for all sizes of smartphones.  
Which of the following functions represents any screen’s diagonal length as a function of its 
width? 

A.    

B.   

C.   

D.  

E.  None of the above 

 

3. The Trans-Port Company manufactures containers of various dimensions, with heights x up to 
4.5 yards. The volume of their containers of height x is given by the function g, where 

is measured in cubic yards. If the height of the container is increased 
from 1.5 yards to 2 yards, what is the corresponding change in the container’s volume, in cubic 
yards? 

A. (2 – 1.5)3  B.  g(2 – 1.5)   C.   
 

D.  g(2) – g(1.5)  E.  g(1.5) – g(2) 

L(w) = 5w
2

L(w) = wh

L(w) = 1
2
w2

L(w) = w2 + h2

  g(x) = 4x3 −50x2 +144x

 2
3 −1.53
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4.  When a rocket is launched, its speed increases continually until its booster engine separates 
from the second stage. During the time it is continually speeding up, the rocket is never moving 
at a constant speed. What, then, would it mean physically to say that at precisely 2.15823 
seconds after launch the rocket is traveling at precisely 183.8964 miles per hour? 

A. 183.8964 is the limit of a difference quotient as time approaches 2.15823 seconds. 

B. If you were to freeze time at 2.15823 seconds after launch, the rocket’s speedometer would 
point at 183.8964 miles per hour. 

C. The rocket traveled at the speed of 183.8964 miles per hour for the first 2.15823 seconds of 
its flight. 

D. The rocket’s speed over the time interval of 2.15822 seconds to 2.15824 seconds after launch 
is essentially 183.8964 miles per hour. 

E. None of the above is an acceptable meaning for the statement that the rocket was going 
precisely 183.8964 miles per hour 2.15823 seconds after launch. 

5. The table below gives information about functions f and g. Let h be defined as h(x) = f(g(x)). 
What is the rate of change of h at x = 4? 

 

 x 

 1 2 3 4 

 20 23 18 14 

Rate of change 
of f at x 7 -3 -7 -2 

 -10 -11 -4 2 

Rate of change 
of g at x -0.5 2 4 3 

A. -2 B. -3 C. -6 D. -7 E. -9 

6. What is the primary focus of calculus? 

A. Properties of graphs, mainly slopes and areas 

B. Finding values of derivatives and integrals 

C. Modeling and analyzing how quantities vary together 

D. Learning complex operations with symbols and numbers to improve cognition 

E. Finding limits 

f (x)

g(x)
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For questions 7 – 10: Let   

7. What does f represent? 

A. A distance function with respect to time 
B. A small change in a quantity 

C. A rate of change function for some quantity 
D. A total amount of some quantity 

E. None of the above 

8. What does  represent? 

A. A distance function with respect to time  
B. A small change in a quantity 

C. A rate of change function for some quantity 
D. A total amount of some quantity 

E. None of the above 

9. What does F represent? 

A. A distance function with respect to time  
B. A small change in a quantity 

C. A rate of change function for some quantity 
D. A total amount of some quantity 

E. None of the above 

10. What does t represent in the expression ? 
A. Time 
B. The value half way between a and x  

C. A variable that varies from a to x 
D. Nothing, it is a dummy variable  

E. None of the above 

 

F(x) = f (t)dt
a

x

∫

f (t)dt

f (t)
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11. Bob traveled in his car at a constant speed along a complicated 
loop, beginning and ending at his home. What must be true about 
the rate of change of the car’s straight-line distance from home 
with respect to time at the moment it is farthest from home?  

A. The rate of change will be largest at the moment the car is 
farthest from home. 

B. The rate of change will change from negative to positive at the 
moment the car is farthest from home. 

C. The rate of change will be zero at the moment the car is farthest from home. 
D. The rate of change will be smallest at the moment the car is farthest from home. 

E. None of the above. 
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Appendix 3 
Sample C1CI Items (all © 2018 Arizona Board of Regents) 

Variation and Covariation 

1. You have an x cm by y cm rectangular sheet of cardboard.  You can fold the sheet into a box by 
first cutting squares with side lengths a cm from each of the four corners. Which of a, x, and y 
have values that vary when you think of finding the box with the largest possible volume? 

 

 
a) a 
b) x 

c) y 
d) x and y 

e) a, x, and y 
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Function 

2. A function f converts weight in pounds (at a particular location on earth) to the equivalent 
mass in kilograms.  Another function g determines the volume of a certain liquid in liters as a 
function of the total mass of the liquid in kilograms. 

Given a certain volume x of this liquid in liters, which of the following is the weight of the 
liquid in pounds? 

 

a)  

b)  

c)  

d)  

e)   

 

Modeling/Quantitative Reasoning 

3. The Trans-Port Company manufactures containers of various dimensions, the tallest being 3.5 
yards tall. The volume of a container depends on its height; g(x) = 4x3 − 50x2+144x is the 
volume (in cubic yards) of a container with height x yards. If the height of the container is 
increased from 1.5 yards to 2 yards, what is the corresponding change in the container’s 
volume, in cubic yards? 

a) (2 – 1.5)3  

b) g(2 – 1.5)  
c) 23

 −1.53 

d) g(2) – g(1.5)  
e) g(1.5) – g(2) 

 

	  f
−1(g(x))

  f (g−1(x))

  g
−1( f (x))

  g( f (x))

  f
−1(g−1(x))
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Structure Sense 

4. For the following function, which differentiation rule applies to the expression as a whole? 

 

a) Chain Rule  
b) Power Rule  

c) Product Rule 
d) Quotient Rule 

e) Sum Rule 

 

Rate of Change 

5. At one end of a brick wall is a vertical light pole. A spider walks on the wall from point A to B 
along the path shown.   The number of feet the spider is above the 
ground (h) and the number of feet the spider is to the right of the light 
pole (k) both vary as the spider walks the path.  

Estimate the rate of change of k with respect to h at the moment shown 
in the illustration.   

a) 1 

b) 2 
c) -2 

d) -1/2 
e) Not enough information to make an estimate  

 

 

Accumulation 

6. On Mars, an astronaut dropped his watch from a cliff. Its speed at every moment was 𝑤(𝑡) 
meters per second, where t is the number of seconds after the watch was released. Which 
expression gives the best estimate for the distance the watch fell from 8 to 8.04 seconds after 
being released? 

a)   b)  c)   d)   

e)  

 

(( f (s) / g(s)+ k(s))3 h(s)

  w '(t) ⋅(8.04−8) w(8)(8.04 − 8) w(8.04)−w(8)
8.04 − 8   w(t)+ w(t + 0.02)(0.02)

  w(8)(0.02)+ w(8.02)(0.02)
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Fundamental Theorem of Calculus 

7. Given a differentiable function k, for what values of a is  for all values of x? 

All values of a such that… 

a) k'(t) = k(a) 
b) x = a 

c) k(a) = 0 
d) k'(t) = k(x)  

e) a = 0 

 

 

 
 

 

  
k '(t)dt

a

x

∫ = k(x)
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Plenary panel 

From Newton’s first to second law: How can curriculum, pedagogy 
and assessment celebrate a more dynamic experience of calculus? 

Alejandro S. González-Martín1, Vilma Mesa2, John Monaghan3 and Elena Nardi4 (Moderator) 
1Université de Montréal, Canada;  a.gonzalez-martin@umontreal.ca  

2University of Michigan, USA; vmesa@umich.edu  
3 University in Agder, Norway and University of Leeds, UK; john.monaghan@uia.no 

4University of East Anglia, UK; e.nardi@uea.ac.uk    

 

Outline 

Calculus is a formidable toolbox for the study of change. Yet, at a time when digital technologies 
provide the capacity to create and celebrate dynamic experiences of calculus, institutional and other 
challenges may impede embracing this capacity in its curriculum, pedagogy and assessment. In many 
high stakes assessment systems, for example, coursework, formative testing and closed-book 
examination tasks seem to be stuck in the pre-digital age. Systemic inertia seems to manifest itself in 
other ways too. Calculus is needed in different shapes and forms in the different disciplines and 
professions; yet, it is typically introduced to those who study disciplines other than mathematics 
without due regard to the needs of the discipline. And, even though students often find calculus 
challenging and irrelevant—and, consequently, may disengage—it is still offered, unchanged, to 
them devoid of the raison d’être for its uses in their disciplines. The panelists first, and briefly, shared 
their experiences in the study and design of curriculum and assessment materials for calculus. Then, 
in the second and longer part of the panel session, through examples from those experiences, they 
mapped out one possible way of fostering change: designing tasks—for classroom activity as well as 
assessment—that convey important meanings of calculus, are accessible, celebrate its dynamism, and 
are tailored to the needs of students in various disciplines who will soon enter diverse worlds of work. 

Following a brief introduction by the moderator, each panelist addressed aforementioned current state 
of affairs (“Inertia”). A first round of audience interventions, collated before the event, as well as on 
the spot possibly via a shared link, followed. The moderator then briefly pulled together the threads 
of the discussion so far and a second round of contributions from each panelist followed on how to 
foster change (“Force and acceleration”). A further round of audience interventions will ensued and 
the session closed with a final comment from each panelist and the moderator.  
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Teachers’ choices of digital approaches to upper secondary calculus 
Henrik Bang1, Niels Grønbæk2 and Claus Larsen1 

1Christianshavns Gymnasium, Denmark; hb@cg-gym.dk and cl@cg-gym.dk 
2University of Copenhagen, Denmark; gronbaek@math.ku.dk 

Background 
Danish mathematical education has put forward a rather extensive use of digital technologies over 
the last 10 – 15 years to enhance mathematical possibilities but with the possible adverse effect of 
diluting core mathematical insight. Instigated and supervised by CMUi, 95 upper secondary 
mathematics teachers have participated in an enterpriseii to counter this risk by explicitly using 
mathematical software, foremost CAS, to develop competences within mathematical intuition, logical 
methods and understanding of mathematical entities. Participating teachers’ skills in use of 
mathematical software ranged from novice to expert. Their projects reflect what ordinary teachers do 
if they are given the opportunity to follow their own ideas. Our analysis of the diversity of approaches 
points to three important circumstances: A design dilemma between anticipated learning paths and 
students’ actual activities; the importance of teachers’ strategic choices of ‘outsourcing’ tasks to 
mathematical software; emphasis on ‘instrumental genesis’. 
The slider trap 
We use the term ‘slider trap’ for the design dilemma. It involves the two other circumstances 
mentioned in the beginning, so we concentrate on the slider trap. It takes the form of a discrepancy 
between the teacher’s design of students’ computer activities based on a hypothetical perception of 
students learning trajectories through problems that they must overcome to unfold the learning 
potential and the students’ actual activities - ending up to demonstrate that there is too little 
opportunity for learning in the design. A digital environment often amplifies this general dilemma. 

One CMU project (Lauritzen, 2015) attracted our attention to the slider trap. It aimed at improving 
students’ understanding of the 3-step-method (cf. below) through a hands-on CAS experience in the 
hope of ending previous years’ teaching frustration. The teacher (L) concludes his project report (our 
transl.): Students asked fewer questions when I [later] lectured on the 3-step-method, but a student’s 
work at the blackboard was as defective as usual. We provide excerpts from an interview: 

Interviewer: Did you pose problems [for the CAS-version of 3-step-method]? 
Teacher: No, that is too complicated. … We can easily arrange it and [we think that] 

now they can surely see it, but they cannot see a bit. There goes pedagogy. 
Interviewer: Is it an animation [of 3-step-method]? 
Teacher: [Yes,] instead of you in the old days sketched a secant on the blackboard and 

then a new secant. 
Interviewer: When you say ‘proof of 3-step-method’, is it then proof for specific 

functions? 
                                                
i Centre of Computer-assisted Mathematics Instruction, Dept. Math. Sci., University of Copenhagen. 
ii 2015 – 2017, funded by The Danish Industry Foundation 
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Teacher: As standard we use x squared. There are many partial elements. 
Interviewer What about square root x? 
Teacher: The idea is that the students can do the full 3-step-method without using so 

much energy on it … All they have to do is to key in a new function and then 
they can see the steps. … I had not expected them to take a function so tricky. 

Even though the learning outcome appears unimproved, L expresses that the project has given him 
much deeper insight into the learning circumstances for the three-step-method. 

The teacher side of the dilemma concerns a priori subject matter analysis, choices of learning tasks 
and environment for corresponding student activities. The teacher’s strategy w.r.t. the fundamental 
outsourcing question of balancing task efficiency with control of outcome (Bang, Grønbæk, & 
Larsen, 2017) is particularly important. Our discourse on students’ computer activities will draw on 
concepts from the theory of instrumental genesis (Trouche, 2014; Drijvers & Gravemeijer, 2005): 
Briefly, the computer is an input-output device with constraints and potentials, an artefact. 
Instrumental genesis is a synthesis of the artefact and the user’s methods and knowledge to the effect 
of meaningful accomplishment of purposeful mathematical tasks. It shows as instrumented action 
schemes composed of technical and conceptual elements manipulated by instrumented techniques, 
whose value have dual character: pragmatic by providing results and epistemic by enhancing the 
user’s knowledge of the objects for the techniques (Artigue, 2002). 

A CAS-app is a milieu consisting of worksheets with text, commands, output and components (sliders, 
buttons, gauges …). The slider trap in CAS-apps has a range of causes, some of which are: 

(1) The app reflects mathematics, which primarily is based non-digital understanding and standards. 
(2) The employed instrumented techniques have low epistemic value. The instrumental genesis 

requires little knowledge and methods resulting in superficial learning. The conceptual elements 
of the instrumented action scheme are not substantial with respect to the intended cognition. 

(3) The subject matter analysis (if any) behind the app is done independent of employed techniques. 
(4) There is no strategic planning of outsourcing to CAS. 
(5) Explorative features are not truly so. Outcomes of allowable manipulations are predefined. 

An illustrative example from calculus 
A common CAS introduction of pointwise differentiation consists of a transcription of the 3-step-
method into a computer environment, explicitly mentioned in official Danish guidelines: First form 

; next reduce the difference fraction  to make the limit process  

accessible. If the limit exists, then . If not, then  is not differentiable at . 

Mathematical software is not just computerized mathematics, but comes with educational intensions. 
The Maple app Derivative Definition is a response to teachers’ needs, the professional solutions that 
spare them of cumbersome CAS coding. It consist of text and Maple components. The text comprises 
statements, descriptions and instructions, which slightly abbreviated read:  at  is  

if it exists, geometrically the slope of the tangent of the graph. One finds an approximation by ignoring 
the limit. The expression  is the slope of a secant. Use sliders and observe what happens, 
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when  approaches 0. The Maple components are a plot window displaying secants and tangents for 
a generic smooth function, sliders for the value of  and  and an output container showing the 
numerical value of the corresponding secant slope, see on-line version (Maplesoft, 2019). For this 
app we detail: 

Re (1): The conception of the 3-step-method is predominantly algebraic paper & pencil methods 
underpinned by a few secant sketches. The epistemic potential lies in the work with the difference 
fraction and presupposes a (heuristic) limit concept. The app’s refined plots do not give deeper 
understanding; they are just illustrations of a phenomenon. Students quickly realize this, but the app 
provides no further insight into why the phenomenon, originating from the 3-step-method, occurs. 

Re (2): The app’s epistemic potential for computation and understanding of point derivatives lies in 
approaching a certain line, called the tangent, by secants through sliding to zero. There is still a long 
way to go. The instrumented action scheme technically concerns to move sliders and conceptually to 
relate this to the geometric effect. The techniques give poor possibilities for output perception, for 
instance of properties of ‘slope’.  

Re (3): The core concept for the app is ‘limit of secant slope’, that is, instantaneous rate of change at 
. It is represented in a semiotic register consisting of (English) language, mathematical symbols and 

non-instrumented transformations. Only after this is the setting converted to a new CAS-register with 
transformations from digital technology. Thus, the app mimics the teacher’s non-instrumented 
perception, but is disconnected from the didactical rationale of the a priori analysis. 

Re (4): Most of the work of the 3-step-method, algebraic manipulations of difference fractions, 
plotting and slope computations are outsourced to Maple components. Possibly this includes what 
may be considered as mathematical core activities. It requires fundamentally new scenarios to regain 
control, i.e. by returning to paper & pencil techniques. The Maple app itself is a hasty experience. In 
order that this is not by accident, a strategic planning of outsourcing is necessary. 

Re (5): The app seemingly invites the students to explore the graphs by means of the Maple 
components, but there are no genuine opportunities for discovery. The app illustrates the definition, 
nothing more. In essence, the students might as well have watched a screencast. 

The importance of a priori subject matter analysis 
The Maple app is an animation of the 3-step-method, which, in all likelihood, is more evocative than 
a few paper & pencil sketches. However, if teacher anticipated student learning is to get to substantial 
grips with existence and value of derivative, the trap falls. When one treats subject matter analysis 
and the instrumented techniques separately, the resulting milieu is meagre. In L’s experience: “I have 
learnt a lot (analyzing the many steps in the three-step-method) about students’ difficulties and will 
rework the project idea.” 

In a similar project targeting understanding of basic properties of differentiability (Grønbæk, 2016; 
G in the following), the core concept is again limit of secant slopes. However, along with the subject 
matter analysis G simultaneously considers computer possibilities for students’ and designs a multiple 
facetted graph tool comprising several Maple component. The students use this tool in a series of 
exercises and problems composed for the purpose. From students’ group discussions G concludes 
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that the concepts secant, tangent and  appear well understood, and that the visual and explorative 
approach has been a rewarding variety leading to discussions of core concepts. 

A common outline of the a priori analysis for designing computer environments: Analyze on which 
core concept the target knowledge may build and subsequently decide on possibilities for computer 
treatment. The CMU-projects emphasize that the relation is mutual, one may have to change the core 
concept as well as the techniques. An example, also leading to knowledge about differentiation: If 
the core concept is local variation of function (rather than instantaneous rate of change), a computer 
environment naturally builds on zooming in on graphs. Zoom-in is the computer’s version of  
argumentations and genuine tasks (i.e. without ‘off-line interpretations’) concerning approximation 
and limits are immediately at hand without the strict formalism: students can find the steepness of a 
graph in a point, ask and answer questions like: When is the zoom picture good enough? Can it be 
better? … These possibilities relate to constraints of the computer such as resolution, pixilation, and 
runtime, pointing back to the need for an abstract formalism. The concept ‘transposition informatique’ 
of (Balacheff, 1993) captures the dialectic nature and educational implications of such 
transformations of the discipline of mathematics.  
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Calculus as a discursive bridge for Algebra, Geometry and Analysis: 
The case of tangent line 

Irene Biza 

University of East Anglia, UK; i.biza@uea.ac.uk  

Introduction 
The tangent line to a curve is one of the mathematical topics that appear in different domains of 
mathematics very often with different uses. For example, we meet the tangent line in Geometry (e.g., 
tangent to a circle); in Algebra (e.g., tangent to parabola and other Cartesian curves); in Calculus 
(e.g., tangent to a function graph at a point where the function is differentiable) or in Analysis (e.g., 
tangent to a function graph as a line with the limit of the difference quotient as its slope). Research 
reports students’ challenges with the tangent line to a function graph (e.g., Biza & Zachariades, 2010; 
Vinner, 1991). These challenges have been attributed, inter alia, to students’ experiences with 
tangents in different domains of mathematics – for example, the tangent to a circle influences how 
students deal with tangents to function graphs.  

In this short paper, I use the case of the tangent line to investigate the origins of students’ difficulties 
when they learn topics in different mathematical domains including Calculus. To this aim, I draw on 
the commognitive framework proposed by Sfard (2008) that sees mathematics as a discourse and 
learning of mathematics as a communication act within this discourse. I start from the viewpoint that 
different mathematical domains endorse different discourses, namely they call for the use of different 
notation, are governed by different rules, and apply different definitions. Thus, if we see the tangent 
line as an object established in these different mathematical domains, most likely we speak about 
tangent line as a different discursive object in each domain. Very often, students are invited to learn 
and work with tangents while they engage with (and shift between) these discourses without being 
aware of these underpinning differences.  

In my previous research on students’ perspectives about tangent line (e.g., Biza & Zachariades, 2010), 
correct/incorrect characterisation of students’ responses to tasks involving tangent lines led to a 
classification in groups with different perspectives (analytical local, geometrical global and 
intermediate between geometrical and analytical). In this paper, I return to the data from the same 
group of first year university mathematics students (Biza & Zachariades, 2010) in order to examine 
not only the correctness of the students’ responses but also how they justify their choices and how 
different discourses are present in these justifications, regardless of their correctness or not – see a 
preliminary analysis in Biza (2017). I see Calculus as a crossroads between Geometry, Algebra and 
Analysis and argue that the lack of awareness of the differences in the transitions across these domains 
and their underpinning discourses can explain students’ challenges with tangent line that research has 
reported repeatedly. I conclude the paper by highlighting potentialities of this analysis for teaching 
mathematical topics that are present in different mathematical domains, including Calculus, towards 
bridging the different mathematical discourses of these domains. 
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Tangent line from the commognitive perspective: An object in different 
mathematical discourses 
According to the commognitive framework (Sfard, 2008), mathematics is seen as a discourse which 
is established within a certain community. Mathematical discourse includes objects (e.g. the tangent 
line) and “discourses-about discourse” (p. 161), which are meta- rules about the use of these objects 
(e.g. what makes a line a tangent line). A mathematical discourse is defined by four characteristics: 
word use, visual mediators, narratives and routines. Word use includes the use of mathematical terms 
(e.g., tangent, derivative or direction coefficient) as well as everyday words with a specific meaning 
within mathematics (such as touch, region or point). Visual mediators are “visible object that are 
operated upon as part of the process of communication” (p. 133) and include mediators of 
mathematical meaning (e.g., function graphs, geometrical figures or symbols) as well as physical 
objects. Narratives include texts, written or spoken, which describe objects and processes as well as 
relationships among those (e.g., definitions, theorems or proofs), and are subject to endorsement, 
modification or rejection according to rules defined by a community (e.g., ‘a tangent line is a line that 
has one common point with a curve’ is an endorsed narrative for tangents in Euclidean Geometry but 
not in Analysis). Routines include regularly employed and well-defined practices that are used in 
distinct, characteristic ways by a community (such as defining, conjecturing, proving, estimating, 
generalising and abstracting). For example, identifying a tangent to a circle at a point A in Geometry 
means drawing a line, which is vertical to the radius at this point, whereas in Algebra this 
identification involves using the formula of the circle in the Cartesian plane and calculating the 
tangent line equation. In the commognitive frame, learning is seen as the development of discourse 
either at object-level (e.g., expansion of an existing discourse with new words and routines) or at 
meta-level, (e.g., changes in meta-rules). Very often, the teacher moves fluently between different 
narratives without communicating these differences explicitly (e.g., Park, 2015). Students, unaware 
of these differences, may be reluctant to change routines that worked well for them for new ones 
without seeing a reason for doing so. This reason is less transparent when teaching emphasises the 
how in the mathematical discourse, by mostly focusing on practical actions resulting in changing 
objects (e.g. how we calculate the formula of a tangent line), and with less attention on the when an 
existing or a new routine should be used. However, the when is exactly the aspect of an object and 
associated routines that can expand these routines in new ones or change them.  

Methodology and Context 
Data reported in this paper were collected with a questionnaire administered to 182 first year 
university students (97 female) from two Greek mathematics departments. All participants had been 
taught about the tangent line in Euclidean Geometry (from Year 7), in Algebra (from Year 10) and in 
a Calculus with elements of Analysis course (in Year 12), but not yet at university as the study took 
place at the beginning of their first year. The questionnaire, inspired by previous works such as Vinner 
(1991), consisted of eight tasks in which the students were asked to: explain the tangent line in their 
own words (Q1); describe its properties (Q2); identify if a drawn line is a tangent line of a given curve 
(Q3); construct the tangent line, if it exists, of a given curve through a specific point (Q4 and Q5); 
provide the definition (Q6), write the formula (Q7), and apply the formula on specific functions (Q8) 
(Biza & Zachariades, 2008).  
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Students’ definition of the tangent line to the function graph 
The analysis of students’ justifications identified engagement with the different domains/discourses 
they had met tangents in: Geometry; Algebra; Calculus; and, Analysis as well as Geometry-Local, a 
hybrid discourse that endorses geometry narratives together with local meta-rules (e.g., “the line has 
one common point with the curve in a region of the tangency point”). Although this hybridisation 
was not in the curriculum, it did appear in student responses. Table 1, summarises these discourses 
with response examples. I note that students often engaged with more than one discourses in the same 
or across questions. For example: “A(x0,f(x0)) y-y0=λ(x-x0) f ΄(x0)=λ direction coefficient. It is a unique 
line with only one common point near to A” can be seen as both Calculus and Geometry-Local. 

 Discourse Example (data have been translated from Greek) 
Geometry “No [it is not a tangent], the line has 2 points in common with the function graph” 
Algebra “Yes, the line ε is tangent at A, the slope equals to the direction coefficient [the 

coefficient m in y=mx+b, that indicates the slope of a line] of the line” 
Calculus “A function which is differentiable at a point A(x0,f(x0)) has a tangent at this point […] 

its formula is y-f(x0)=f ΄(x0)(x-x0)” 
Analysis “The line has formula ε: y=λx+β at the point Α(x0, y0) the point A satisfies this formula 

[sic] and 𝑙𝑖𝑚
3→3a

U(3)bU(3a)
3b3a

= 𝜆” 

Geometry-
Local 

“[It is a tangent, b]ecause if we consider a small region (κ, γ) around the point A where 
[the line] ε is tangent we can see that [the line] ε does not touch any other point” 

Table 1: Discourses identified in student responses with examples. 

For some students, working across discourses compromised the correctness of their responses. Other 
students, navigated across and within discourses with success. For example, 
S[149], a student who performed well in the questionnaire, writes in Q1: 
“[The tangent] is [the line] that has ‘two’ [his emphasis] common points with 
Cf the distance of which is infinitely small and thus we consider that it [Cf] 
has a double point”. Then, in Q2, he adds:  
“f ΄(xA)=λ the direction coefficient. 𝑓5(𝑥Z) = 𝑙𝑖𝑚

3→3a

U(3)bU(3d)
3b3d

. At this point it 

[the line] has one ‘double’ [his emphasis] common point with Cf. It can have other common points 
with Cf, x≠ xA” [Figure 1]. In Q3.6, (inflection point) he writes: “The [line] ε is [tangent] because f is 
differentiable at xA and ε has one (double) common point with Cf in the region (xA-κ, xA+κ), κ>0 and 
very small”. In Q3.7 (corner point where the function is not differentiable), he rejects the line because 
“Cf has two tangent semi-lines at A which, however, do not have the same slope”. We see in S[149]’s 
responses a mixture of words from Geometry (common points), Algebra (double point), Calculus 
(derivative) and Analysis (limits). A recurring endorsed narrative in his responses is the analytical 
definition of the tangent line through the limit of the difference quotient or/and the secants. All these 
words and narratives have been subsumed in the Analysis discourse, e.g., the double point is not seen 
as the algebraic solution but as the limiting position of two points that approach each other (“infinitely 
small”). As a result, the words are still used but this use is different – and is not contradictory. For 
S[149], drawing on the meta-rule of convergence (in Analysis) has shifted his meaning of common 
points, double point and derivative as discursive objects.  

 
Figure 1: S[149]’s 

response to Q2 
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είναι εφ/νη του εαυτού της)». Η συνέπεια αυτή φαίνεται και στις ασκήσεις γωνιακών 

σηµείων όπου για να απορρίψει τις ευθείες χρησιµοποίησε διαφορετικά ισοδύναµα 

επιχειρήµατα, π.χ. στην q3.5 γράφει:  

Ȁαµία. ∆εν ορίζεται εφαπτοµένη στο Α γιατί η κλίση πριν και µετά είναι διαφορετική οπότε η 
κλίση στο Α δεν ορίζεται. Άρα δεν ορίζεται και εφ/νη (ηµιεφαπτόµενες ορίζονται αλλά και 
πάλι οι ε1, ε2, ε3 δεν είναι λόγω συντ. δ/σης). 

Σχετικά µε το µαθηµατικό πλαίσιο από το οποίο άντλησαν τα επιχειρήµατα τους οι 

φοιτητές που συνδέθηκαν µε την εικόνα Ȃ1, θα µπορούσαµε να πούµε ότι υπήρχαν φοιτητές 

που κινήθηκαν σε πολλά πλαίσια άλλοτε µε συνέπεια και άλλοτε όχι .  

Ο φοιτητής [149] άντλησε τα επιχειρήµατα από διαφορετικά µαθηµατικά πλαίσια και 

χρησιµοποίησε διαφορετικές αναπαραστάσεις στον τρόπο που εκφράστηκε. Η µετάβαση από 

το ένα πλαίσιο στο άλλο και η χρήση των αναπαραστάσεων έγινε µε συνέπεια και µε 

λειτουργικό και συνδεδεµένο τρόπο. Στην ερώτηση q2 έγραψε: «f΄(xA)=λ ο συντελεστής 

διεύθυνσης. f΄(xA)= ( ) ( )lim
A

A
x x

A

f x f x
x x→

−
−

 [αναλυτικό πλαίσιο]. Στο σηµείο επαφής έχει ένα 

"διπλό" κοινό σηµείο µε τη Cf [αλγεβρικό πλαίσιο]. Ȃπορεί να έχει κ' άλλα κοινά σηµεία µε 

τη Cf, x≠ xA [αναφορά στο γεωµετρικό πλαίσιο]» και σχεδίασε το σχήµα της Εικόνας 6.3. 

 

Εικόνα 6.3. Ερώτηση q1, φοιτητής [149] 

Παρακάτω στις ασκήσεις ταύτισης και γωνιακών σηµείων αναφέρθηκε στις 

ηµιεφαπτόµενες. Για παράδειγµα, στην q3.14 έγραψε: «Είναι γιατί αποτελείται από δύο 

ηµιευθείες. Η µια εφάπτεται στην Cf στο Α για x≤ xA κ' άλλη στη Cf στο Α για x≥xA. Έχουν 

τον ίδιο φορέα, άρα συγκροτούν εφαπτόµενη ευθεία». Αλλού αναφέρθηκε στα πλευρικά όρια 

του λόγου µεταβολής και στις ηµιεφαπτόµενες. Για παράδειγµα, στην q4.9 γράφει: «∆εν 
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Conclusions with teaching suggestions 
The discursive analysis of students’ responses indicated engagement with a range of discourses, from 
Geometry, Algebra, Calculus and Analysis and with a combination of discourses (see Table 1). 
Through this analysis, student responses that might at first have seemed incoherent (and very often 
incorrect), were explained, rationalised and demystified when seen in the context of student activities 
and experiences. Although previous studies on students’ cognitive processes have created plausible 
explanations of students’ thinking about tangents, a closer, commognitive look at students’ 
justifications reveals potential origins of the challenges students face in the transition across 
mathematical domains. These challenges may originate, for example, in: the applicability of routines 
(Sfard, 2008, p. 215: a well-established routine may be evoked even if it is not appropriate) and 
differences in discursive objects (ibid, p.161: discursive objects may keep the same name but may 
have different uses and different meta-rules in different mathematical discourses).  

Mapping out students’ discursive activity through a commognitive lens suggests the potency of 
rethinking how we address students’ difficulties, especially for topics students meet in different 
mathematical domains. First, considering the differences of these discourses is key in demystifying 
and addressing the challenges students often face. Second, conflicts between discourses is a 
significant part in students’ learning and not a contingency that teachers may ignore or avoid. Third, 
not seeing mathematics as a homogeneous discourse and raising awareness of different discourses is 
essential in resolving such conflicts. Fourth, teaching with emphasis on mathematical definitions 
without discussing the rules on which these definitions are grounded may obstruct students from 
moving between discourses. Finally, engaging with a substantial range of examples in which a 
mathematical object is realised – in our case, tangency – is central to raising awareness of the different 
discourses in which this object is present. Appropriately selected examples act as catalysts between 
students’ and teachers’ discourses, can generate and resolve conflicts and offer a platform on which 
to discuss not only the how but also the when in mathematics, especially in cases such as Calculus 
which lies at a crossroads between Geometry, Algebra and Analysis. 
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Introduction 
Introducing the slope of a curve in a point and the derivative of a function to students is a didactical 
challenge for teachers. It is tempting to choose for an instrumental approach, swiftly progressing from 
conceptual issues to differentiation techniques, both easier to teach and to learn. Without conceptual 
understanding this may entail merely meaningless manipulation of symbols and execution of recipes. 
The meanings of limit, difference quotient and other concepts related to the slope of a curve in a point 
form a serious obstacle for teaching this topic (e.g., Tall, 2013; Zandieh, 2000). 

This paper discusses an attempt to deal with these obstacles inspired by design heuristics from the 
theory of Realistic Mathematics Education (RME) suggesting that a means to learn mathematics in a 
meaningful way is to engage students in a process of reinvention (Freudenthal, 1991). A common 
approach in RME is to introduce a new concept through a task in which the context provides 
opportunities for students to focus on reasoning and representations related to that concept. 
Gravemeijer and Doorman (1999) state it as follows: 

The students should first experience a qualitative, global, introduction of a mathematical concept. 
This qualitative introduction then should create the need for a more formal description of the 
concepts involved. (p. 113) 

This study reports initial experiences of an attempt to support students in (re)inventing the notion of 
the slope of a curve in a point and  related representations (e.g. Zandieh, 2000). Students, 
collaborating in groups of three, are asked to design a playground slide (or a ski-jump) consisting of 
a bend and a straight part joining without bumps. The desired outcomes are concrete equations 
describing a line and a curve that meet smoothly (imagining the purpose being to feed these equations 
into a 3D-printer to print the slide). The task aims for students to discuss what it means for the line 
and curve to meet in a not-bumpy, i.e. smooth, way. They should search for methods to design such 
a slide and to decide to what extent smoothness is achieved. The hypothesis is that they will come up 
with ideas that are essential to the notion of slope of a curve in a point: informal building blocks, 
meaningful to the student, that can be exploited by the teacher to introduce the slope of a curve in a 
point more formally. 

Students have a tactile (embodied) and visual understanding of what it means for a surface (or better, 
a curve) to be smooth, as also pointed out by Tall (2013). He suggests students slide their hands along 
a curve to sense the changing slope. In line with current views on embodiment, the slide task offers 
opportunities for students to mathematize this tactile and visual experience (Drijvers, submitted). A 
main merit of the slide task is that it is formulated in a very open way: it invites inquiry and various 
approaches. We discern three options: the standard textbook approach through secants of the curve, 
the linear approximation by a zooming in approach (Tall, 2013), and a more algebraic approach based 
on the multiplicity of intersection points. The most important design intention of this slide task is to 
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allow the teacher to connect the student’s work to any or all of these approaches, depending on what 
students produce, possibly providing multiple views on the notion of slope.    

The design of the lesson plan (scenario) for the task is based on the Theory of Didactical Situations 
(TDS) (Brousseau, 2002). We investigated whether combining RME and TDS as frameworks for the 
design of an inquiry-based mathematics lesson can lead to a successful scenario. This approach of 
combining ideas from RME and TDS to task design for inquiry-based mathematics teaching is 
explored in the Erasmus+ project Meria (Winsløw, 2017). 

The research question addressed in this paper is: How do RME-inspired task characteristics and a 
TDS-inspired teaching scenario support students’ reinvention of the notion of slope of a curve at a 
point? In this study the notion of reinvention refers to both the process of students’ inventing solutions 
for the task and the whole teaching process of introducing the task and discussing the results by a 
teacher. 

Theoretical background 
The design of the task originates from the RME-principle of a didactical phenomenology 
(Freudenthal, 1983). The challenge of realizing a smooth connection in the slide context is a 
phenomenon that begs to be organized by the tangent line; visually at first, but then also through 
symbolic means, to find out whether the candidate line and curve really join in a smooth way. This 
problem situation is expected to invite students to develop their own situation-specific solution 
methods. A (situational) model expected to emerge from the slide task is that of the slope of a curve 
at a point as the slope of a tangent line. This is a model of, produced after one episode of 
mathematizing. This is expected to develop into a model for further mathematizing towards symbolic 
and computational aspects of the slope in a point and the derivative (Doorman & Gravemeijer, 2009).  

How to organize the classroom for such a reinvention activity? Freudenthal (1991) claims that 
“guiding means striking a delicate balance between the force of teaching and the freedom of learning” 
(p. 55). TDS might provide a suitable framework to balance the two. Central to the theory is the 
difference between didactical and adidactical situations (Brousseau, 2002). In a didactical situation 
the teacher acts intentionally to share his knowledge. In an adidactical situation the teacher 
purposefully withdraws, leaving space for students to develop their own activities. Students need this 
space to have the opportunity to invent their own meaningful strategies to address the slide problem. 
For Brousseau the alternation of didactical and adidactical situations also served the purpose of 
establishing a new didactical contract. During the adidactical situation the teacher cannot be expected 
to be involved in the mathematizing process. Instead (groups of) students interact with the milieu. For 
the slide task, the milieu consists of the problem itself together with the artifacts that may be needed 
to tackle it, for example GeoGebra.  

The slide task lesson plan is set up according to phases from TDS and starts with the teacher 
explaining the problem and introducing artifacts that can be used to work on it. Then the teacher 
symbolically hands over the milieu to the students and withdraws. What follows is an adidactical 
action phase of 20 to 30 minutes. In this phase students work on the problem in groups of three. They 
may apply any approach they think is useful. The teacher, even though not interacting with the 
students, is not inactive: she registers solution strategies from the students and identifies examples 
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that might be used in the following formulation phase. The teacher makes sure that, for groups that 
have different strategies, one student explains their approach on the blackboard. Then follows a 
validation phase. The teacher asks questions such as: “are some solutions better than others? Is there 
a best solution? How do you know?”. The classroom discussion provoked by these questions form 
the input for the last phase: the institutionalization phase. In this phase the teacher is expected to be 
able to organize the ideas and strategies presented by students into solution models of the slide 
problem. The teacher makes a start with transforming the emerging model of the situation produced 
by students into a model for mathematical reasoning.   

Results from pilot studies 
Pilot lessons have been conducted at schools in the Netherlands, Croatia and Slovenia with students 
who were not familiar with the derivative yet. Below we discuss indicators of situational student 
models observed in the action and validation phase, which have the potential to be developed into a 
more formal mathematical model in the institutionalization phase.  

Action phase. In the action phase we observed several student strategies for the design. Obviously, 
students decided themselves on the type of curve they would use for the bent part of the slide. Then 
they needed to provide a way either to vary the line or the curve to investigate several designs. Some 
tried a discrete set of options, but others introduced parameters. Students working with GeoGebra 
dragged lines and curves, and some knew how to read the equations for the curves from the screen. 
Other students tried to draw a tangent line to the curve and created an equation from two observed 
points on the line. Occasionally students used two points on the curve (a secant line) resulting in an 
imperfect connection. There were two observations though (from Croatia) where students used this 
construction in GeoGebra and then moved one point towards the other. Students working with 
parameters were observed varying the parameters of the curve, e.g. the 𝑎 in 𝑦 = 𝑎	𝑥G, or the 
parameters 𝑚 and 𝑛 of the line 𝑦 = 𝑚	𝑥 + 𝑛.  

Validation phase. Students validated their designs both during the action phase and during the 
validation phase; in the latter they gave this more attention, encouraged by the teacher. Primarily most 
students evaluated the smoothness based on their intuitive, embodied idea of what that is. Some 
students talked about “a good fit”, some about tangent lines and some about intersection points. We 
observed three categories to classify students’ validation approaches: 

I. (Visual). Some relied on their visual evaluation of the design: if it looks goods, then it is good. 
Students chose to zoom in on the curve (work on a smaller scale), for example using GeoGebra 
or similar. 

II. (Algebraic). Some computed whether their system of equations had the intended (unique) 
intersection point as a solution.  

III. (Numerical). Some designs were validated by construction, if numerical data obtained from 
drawings or GeoGebra were used to compute (the parameters for) their equations. 

Institutionalization. Based on the informal student models the teacher had the opportunity to 
institutionalize various aspects of the notion of slope of a curve in a point. We sketch three cases: 
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1. (Intersection points approach) Many students focused on the fact that they want no other 
intersection point near the intended intersection point. This fits in nicely with a pre-
Newtonian point of view to tangency and slope: the point of intersection corresponds to an 
algebraic solution with multiplicity ≥ 2 of equating the line and the curve. Using for example 
the discriminant the teacher could have shown a computation of this kind in a student design.    

2. (Secant lines approach) In some cases students worked with two points on the slope, or their 
attention is drawn to the presence of another intersection point in an imperfect solution. The 
teacher then discussed how such a solution can be improved by moving the one intersection 
point towards the other. An improved solution was further discussed leading to a perfect 
solution (in a limit process). 

3. (Linear approximation approach) Some students validated their design by zooming in. After 
zooming in long enough the curve will coincide with the line. These students seemed to be 
more focused on obtaining a “nice fit” and less specific on intersection points. A teacher then 
could have explained about local linearity of curves by using a simple example: suppose 
students have solutions 𝑦 = 𝑥G + 2𝑥 and 𝑦 = 2𝑥 intersecting in (0,0); without the higher 
order term 𝑥G, the two equation indeed coincide. If the intersection point is not in the origin, 
this could be achieved by translation.  

This paper is a shortened version of a paper accepted for the proceedings of CERME 11. 
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Introduction 
I have been interested in investigating undergraduate mathematics students’ affective (emotional) 
experience with transitioning from school to university mathematics (e.g., the secondary-tertiary 
transition) for several years. I propose that assisting students in “confronting” the notion of 
transitioning from school to university mathematics has a role to play in students’ perseverance in the 
major, and one way that this can be done is by using the historical development of particular domains 
in mathematics. Doing so enables students to engage with how the nature of mathematics has changed 
over time, and that this change is reflected in their own mathematical change (or transition) from the 
nature of mathematics at school (e.g., use of empirical methods) to the nature of mathematics at 
university (e.g., an abstract-formal orientation). The use of primary historical sources (in the form of 
Primary Source Projects, or PSPs) is one way in which students can meet these changes in the nature 
of mathematics – particularly when focusing on the different meta-discursive rules – and which has 
the potential to support students’ meta-level learning.  

Overview of the research plan 
The transition from school to university mathematics has received increased attention in recent years 
in a variety of contexts outside of the United States, which has been precipitated by mathematicians’ 
decades-long lament about undergraduate students’ lack of knowledge upon entry at university. Over 
time, this gap in knowledge has become known as the “transition problem.” Two aspects of the change 
from school to university mathematics are (a) the conceptual change and learning processes that 
students experience and (b) the transitions that take place as students move between social groups or 
contexts with different mathematical practices (Gueudet et al., 2016). In other words, what students 
learn and how they learn it changes dramatically between school and university mathematics, and 
these differences have a significant impact on students’ decision to persevere as mathematics majors.  

Interview component 

To examine the secondary-tertiary transition experienced by mathematics majors at Florida State 
University (FSU), I first seek to gain an understanding of features of the undergraduate mathematics 
major experience by conducting interviews of current mathematics majors (in the Pure Mathematics 
and Secondary Education tracks1). Of the 60 majors in our target population, 11 students responded 
to our request for interviews and I completed interviews for nine of these. The interview protocol was 
designed to glean as much information as possible, regardless of where students may identify 
themselves in the secondary-tertiary transition and each interview was approximately 75 minutes in 
length and video recorded. The interviews will capture student conceptions of their experience at 

                                                
1 At FSU there are five mathematics “tracks” (or major programs): (Pure) Mathematics, Applied and Computational 
Mathematics, Biomathematics, Actuarial Science, and Mathematics/FSU-Teach (the secondary education major). 
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various timepoints2 in the undergraduate mathematics major and will assist in identifying and 
describing attributes of the student experience at FSU. I completed the “exploratory interviews” in 
April 2019 and I will conduct the Transition Seminar in July 2019.  

Although existing literature on the transition problem focuses on the causes for students’ difficulties 
in various transitions (Gueudet, 2008), there is evidence that identifying “relevant variables for a 
successful transition at the university level” (Di Martino & Gregorio, 2018, p. 4) is a fruitful enterprise 
to pursue. Among the variables Di Martino and Gregorio identified is self-concept as mathematics 
learners (and similar variables such as confidence and perceived competence), which typically holds 
a positive effect for students in their mathematical learning, and consequently continued perseverance 
in the mathematics major. Others have emphasized the importance of this positive influence (e.g., 
Rach & Heinze, 2017). Students often report increased levels of confidence when grades improve, or 
they similarly attribute poor grades to low levels of confidence with regard to mathematics. However, 
what has received less attention is determining relationships among confidence and perceived 
competence and other variables of interest, such as those proposed in this study.  

Transition seminar component 

The second component of the pilot research study is to design, implement, and study a supportive 
intervention to address potentially critical aspects of transitioning to the study of undergraduate 
mathematics. Although this has been investigated a similar transition seminar (e.g., Witzke, Clark, 
Struve, & Stoffels, 2018), it was implemented in an institutional context quite different from FSU, 
and part of our inquiry is in fact to question whether the transition is “felt” or experienced in similar 
ways to that of other contexts, particularly in Europe. Furthermore, in the current pilot study I am 
interested in using the outcomes from the interview component to at least partially inform the design 
of the Transition Seminar – particularly with regard to what I learn from the interviews pertaining to 
affective dimensions, such as those related to perceived competence (or, confidence). The seminar 
will include the implementation of a sequence of PSPs which focus on (a) concepts from calculus that 
students would meet in a Calculus I course and (b) more abstract concepts that students would 
typically address in an Introduction to Analysis or Advanced Calculus course (at FSU), which is a 
senior-level mathematics course, but may be taken at any point after the completed prerequisites (e.g., 
Calculus III, Linear Algebra, and one “introduction to proof” course). 

I intend to include within the Transition Seminar explicit discussions that address students’ emotional 
or affective experience within the transition, as well as to provide opportunities for students to 
“develop the more rigorous and critical view of the basic ideas of calculus that an introductory 
analysis course seeks to achieve” (Barnett, 2016, p. 294). Three different PSPs will be implemented 
during the seminar, which will provide opportunity to listen for how participants engage with the 
historical materials, including their ability to “develop an understanding of the language, techniques 
and theorems of elementary analysis that developed when mathematicians adopted such a critical 
perspective in the nineteenth century” (Barnett, p. 294) and can serve as an example of mimicking a 

                                                
2 We targeted current mathematics majors who are at one of three timepoints along their trajectory of study: (1) taking 
courses in the Calculus sequence; (2) have completed the calculus sequence and at least one other prerequisite for 
Introduction to Analysis (or Advanced Calculus); (3) have completed Introduction to Analysis (or Advanced Calculus). 
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transition of sorts. For example, the ideas of analysis found in the calculus sequence at university (in 
the United States) can be perceived by students as a collection of procedures that are carried out for 
solving the problems of calculus (which may be more aligned with students’ perceptions of school 
mathematics) – which is exactly what our interview findings support. However, in an introductory 
analysis course, the rules of the game appear to change, and students may feel they have fallen into 
an abyss of sorts, given the difference in the meta-level rules dictating this very different realm.  

The pilot study is guided by several research questions which will enable a more precise description 
of the various features of the transition(s) that students experience, as well as how the emphasis on 
historical materials may mediate this experience: 

(1) In what ways are students’ perceptions on the nature of calculus related to their affective and 
emotional response to transitioning from school to university mathematics, and what role do 
sources and materials from the history of calculus play with respect to students’ perceptions, affect, 
and emotions?  

(2) How do seminar participants portray the differences between learning Calculus and 
Introduction to Analysis? 

(3) When using PSP materials, in what ways are students able to relate the transitions that occurred 
between 17th century and 19th century mathematics (e.g., from early calculus to analysis) with their 
own transition?   

A short note on PSPs 

The PSPs that are designed as part of the TRansforming Instruction in Undergraduate Mathematics 
via Primary Historical Sources (TRIUMPHS) project employ a guided reading approach developed 
with support from the National Science Foundation (in the United States). In this approach, students 
are provided with “sufficient guidance to allow them to successfully read an original source, while 
still allowing them the excitement of directly engaging with the thinking of its author” (Barnett, 2016, 
p. 295). The curricular materials that will be used in the Transition Seminar will ask students to read 
selected excerpts in one PSP, for example, that: 

motivate the need for a rigorous definition of the derivative, with some historical perspective. 
Newton’s example of (𝑥g)′ is also discussed by Cauchy later in the project. L’Hôpital’s argument 
for the Product Rule with differentials is used to motivate a modern proof of the Product Rule for 
derivatives…near the end of the project. (Ruch, 2017, p. 10) 

Another PSP includes: 

writings of the nineteenth century mathematicians who led the initiative to raise the level of rigor 
in the field of analysis – as well as those who resisted or misunderstood this initiative – students’ 
own understanding of and ability to work at the expected level of rigor can be refined. (Barnett, 
2016, p. 295) 

The PSPs will be implemented in an active-learning model, with the first PSP as a shorter (“mini-
PSP) designed to introduce students to the guided reading approach and to promote their interaction 
with other students in their discussion of concepts and results of their work on tasks. The second and 
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third PSPs will be similarly implemented and will focus on rigor in analysis. Student discussion and 
reactions will be elicited in order to address components of each of the three research questions.  
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Introduction 
In France, the teaching of integration begins the last year of high school, in grade 12 (17-18 year old 
students). We focus this paper on the teaching and the learning of the integral calculus and, especially, 
we present an original introduction of the concept of integral of continuous and positive functions in 
French high school, in the scientific track.  

In the current French curriculum (in the scientific track), the integral of a continuous and positive 
function on an interval [𝑎; 𝑏] is defined as the “area under the curve” (MEN, 2011). It is on this aspect 
of the integral that teachers must rely to introduce the new mathematical concept of integral. Our 
question is: how to introduce this concept in high school? Initially some textbooks propose to 
determine the area under a parabola. But why? It is an artificial problem: it is only a calculation of 
area to calculate an area… How motivating is the need to calculate an area under a curve really? With 
what problems? As Thompson and Silverman (2008) explain, the case where the integral is a measure 
of an area is the simplest case (where 𝑥 and 𝑓(𝑥) are lengths). The integral can be a measure of 
distance, of volume, of electric charge… In fact, the area under the curve is not the studied object but 
a register of semiotic representation (in the sense of Duval, 1993) of the quantity that it represents.  

The original idea of this paper is to introduce the integral concept as an answer to probabilistic 
problems. Indeed, in the French curriculum of grade 12 in the scientific track, the register of semiotic 
representation of area under a curve is present in the part on continuous probability distributions too. 
We read that a random variable 𝑋 (a function from Ω to ℝ which associates for each result a number 
of an interval 𝐼 de ℝ) “fulfills the conditions that define the probability of the event 𝑋 ∈ 𝐽 as the area 
of the domain: {𝑀(𝑥; 𝑦); 𝑥 ∈ 𝐽	𝑒𝑡	0 ⩽ 𝑦 ⩽ 𝑓(𝑥)}	where 𝑓 is the density function of the distribution 
and 𝐽 an interval included in	𝐼” (MEN, 2011). In this special case, the area does not represent an area 
but a probability. There is the relation (*): 𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = ∫ 𝑓(𝑡)𝑑𝑡O

N 	. Our goal in this paper is to 
present designed tasks that create the need to calculate areas under a curve to determine probabilities 
and therefore to introduce a mathematical tool (in the sense of Douady, 1986) which addresses this 
problem with regard to the integral. 

How to understand the notion of accumulation through probabilistic problems? 
Several researchers propose to use accumulation as the core idea for approaching the integral concept 
(Thompson & Silverman, 2008; Kouropatov and Dreyfus 2013, 2014). According to Thompson and 
Silverman (2008), “for students to see “area under a curve” as representing a quantity other than area, 
it is imperative that they conceive the quantities being accumulated as being created by accruing 
incremental bits that are formed multiplicatively” (p. 45). We think that aligns the area in a 
probabilistic context, to the accumulation approach. 
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In our proposition, three mathematical domains intervene to make sense at the integral: statistics, 
probability and calculus (Derouet & Parzysz, 2016) to pass from frequency to integral (table 1). 

Statistics Probability Calculus 

Descriptive statistics Continuous probability Integral calculus 

Histogram Probability density function Continuous and positive function 

Area of the rectangles Area under the density curve Area under the curve 

Frequency Probability Integral 

Table 1: From frequency to integral 

In a histogram, we can determine the frequency 𝑓\ of a character on a class of amplitude 	
𝑎\ by the formula 𝑑\ × 𝑎\ which 𝑑\ represents the frequency density on Y axis (see Derouet & Alory, 
2018). Frequency corresponds to the area of the rectangles. The sum of the areas of all the rectangles 
is equal to 1. Probabilistic modelling of the phenomenon proposes to find a curve (of a probability 
density function 𝑓) which “smooths” the histogram. Using an analogy between statistics and 
probability, we obtain that 𝑃(𝑋 ∈ [𝑐; 	𝑑]) corresponds to the area under the curve on [𝑐; 	𝑑] and that 
𝑃(𝑋 ∈ [𝑐; 	𝑐 + ∆𝑥	]) ≈ 𝑓(𝑐) × ∆𝑥 when ∆𝑥 approaches 0. The bigger the considered interval, the 
higher is the probability (so the accumulation). The probability depends on the interval but also on 
the probability density (which depends to the interval). The integral is a tool to determine probability 
and after, the object “the integral of a continuous and positive function” is a generalization.  

To enact progression in the introduction, we identify three levels of calculation of area under a curve: 
- Level A1: calculation of elementary area. We determine the value of the measure of some 

basic geometrical objects (e.g. the area of a rectangle, a triangle…) that students know the 
formulas for, in other terms when the function is an affine function. In probability, uniform 
continuous distribution is an example of this level. 

- Level A2: calculation of area with the use of the Fundamental Theorem of Calculus (FTC); in 
other terms when the function admits primitives that students knows (reference functions). In 
probability, the exponential distribution is an example. This level is the main goal of the 
chapter on integral calculus. Before the integration course, this level does not exist. 

- Level A3: Approximate calculation of area using, for example, of the rectangle method or 
softwares. The normal distribution is an example of a distribution in this level (in grade 12). 

Designed tasks 
We assume that students did not study antiderivative functions, integral calculus and continuous 
distributions before. The designed tasks are two modelling problems in probability. The first one 
considers the waiting time of the first people to arrive when two people have an appointment. The 
second problem is evaluating the time between two Aso volcano eruptions. The goals of these tasks 
lead to the notion of density function and its characteristics, especially the link between area under 
the desired curve and probability (and also that the total area under the curve is equal to 1) and the 
need to calculate different types of area under a curve. In the first problem, the area is of the level A1 
(only elementary formulas of area formula are required) while in the second one, the density function 
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is negative exponential and so the level of the calculation of the area under the curve is A3 because 
students do not yet know integral calculus (figure 1).  

  
Figure 1: Histograms and density curves in the both tasks 

After getting the second curve, the problem then becomes: how to determine the area under this type 
of curve? The software GeoGebra is used to provide a first answer but students are then invited to 
find a solution to approximate the area in the interval [0;20]. 

Implementation of the second task 
A complete unit, articulating integral calculus and continuous probability distributions with these 
tasks, has been experimented on by different teachers since 2015 (Derouet & Alory, 2018). Derouet 
(2016) provides a detailed analysis of the first experimentation. We briefly explain the 
implementation of the second task. The students have a table with the years of the different eruptions 
of the Aso volcano between the 13th and 19th centuries and they must evaluate the probability that the 
next eruption will be within 5 years and during the year 2030 (the volcano erupted during the 
experimentation in March 2015). The first problem permitted to students to implement a step-by-step 
approach that enabled them to estimate a new time: 

1) Gather the data in classes; 
2) Represent them with a histogram (some students begin to draw it but the teacher then uses 

GeoGebra to construct histograms with different classes amplitudes); 
3) Find a curve that “smoothens” the histogram (called a “tendency curve”) on the interval 

[0;+∞[; 
4) Determine areas under the curve to evaluate probabilities. 

In this problem, finding a curve that can be a candidate as a density function is not evident. Initially, 
the students proposed functions → N

O3yz
 . They observed with GeoGebra that the area under the curve 

on the interval [0;+∞[ can not be equal to 1. Students wondered about the possibility or not that the 
area under the curve on an infinite domain is finite. They could refer to work done before, with 
examples of infinite broken lines, one of which has an infinite length and the other a finite length. 
Students then continued by proposing a decreasing exponential and they searched for appropriate 
parameters. GeoGebra is a numerical tool that permits the user to determine areas under a curve and 
so corresponding probabilities. The work then set out to approximate the area on the interval [0; 20]. 
Several techniques were identified in the class: counting tiles, compensation method, trapezium 
method, rectangle method, tangent method… Finally, the rectangles method is institutionalized (the 



 

 

 86 

teacher coordinates work proposed by the students), and it is admitted that if 𝑓 is a continuous and 
positive function on [𝑎; 𝑏] with A the area under the curve than A is the limit of the Riemann sums. 
Then the integral is defined as the area under the curve. In a second step, the antiderivate function 
and the integral are linked by the FTC. 

Discussion 
This approach aims to motivate the introduction of the integral of a continuous and positive function 
as a tool, before studying it as an object (Douady, 1986). To make sense to the area under a curve like 
a register of semiotic representation of an object (and not like the studied object), we propose an 
introduction with probability tasks using the idea of accumulation. Furthermore, we think that this 
introduction makes sense for density functions and permits one to connect integration and probability, 
that it is not the case in traditional teaching (Derouet, Planchon, Hausberger & Hochmuth, 2018) 
where continuous distribution is often only an application of integration formulas.  
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Introduction 
In this proposal, we assume that working with undergraduate students on the triade discretness – 
density – completeness is likely to foster conceptualisation in Analysis (Durand-Guerrier, 2016; 
Durand-Guerrier & Vivier, 2016).  In her very complete review on the theme of discrete and 
continuum in secondary education in France, Rousse (2018) argues that the main problem at the 
secondary level is the understanding of density and that the completeness of R is not an issue. It can 
then be hypothesized that while density is a major issue in the teaching and learning of calculus at 
secondary school, the distinction between density and completeness is an important issue of the 
transition from calculus to analysis at the beginning of university (Bergé, 2008). 

A main difficulty with the conceptualisation of density as an intrinsic property of ordered number 
sets raised in Durand-Guerrier (2016) is to make visible in graphical representation the difference 
between the real numerical line (continuous line) and the rational (resp. decimal) one, the latter being 
both incomplete in the sense that there are, on the line, points without abscissa in Q (resp. D), and not 
discrete because between two points with abscissa in Q (resp. D), it is possible to put a different point 
with abscissa in Q (resp. D). Due to the large use of graphical representations in calculus, this 
reinforce the common conception of a dichotomy between discreteness and completeness, that 
hinders the necessity of a completion of Q (or D) for proving, without reference to geometrical 
intuition, main theorems of calculus (eg. The Intermediate Value Theorem, IVT).  

We hypothesize that this is still reinforced by the use of digital tools, calculator, spreadsheet, grapher, 
that show signs, mainly numerical or graphical, that need to be interpreted for analytical work. The 
representation given by the artefacts is partial, truncated, and a reconstruction of the objects of 
analysis that are imperfectly represented is needed. There are two steps in this visualization: on the 
one hand, the fact of understanding that, despite the high precision of tools that makes it possible to 
obtain a significant number of decimals (at least 12 nowadays), there are potentially other non-zero 
decimals that we do not see; on the other hand, these tools cannot, despite appearances, justify the 
existence of an object that is based on mathematical properties. The first point is based on the notion 
of density of an ordered set, mainly in our study the set D of finite decimal numbers, and the second 
mainly on the notion of completeness, of the set R of real numbers. These two notions, which are 
mathematically very different, are treated in the same way by technological calculation tools with the 
production of the same signs. 

We hypothesize that this could contribute to the important and various difficulties of teaching and 
learning analysis nowadays. Difficulties for students to acquire an understanding beyond the 
displayed signs and then to differentiate between notions. Knowledge involved is of two different and 
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intertwined types: mathematical knowledge and knowledge of the technological tools used. This led 
us to consider a didactic situation allowing students to visually distinguish between density in itself 
and completeness. Preliminary experiments conducted around exponential functions have led us to 
retain the definition of these functions based on their algebraic properties as a good candidate to a 
first reinterpretation of density with a removal of certain characteristics of the continuum, which 
should encourage the emergence of the notion of continuum. 

We discuss first some results from a questionnaire showing difficulties of university students. Then 
we expose the didactic situation around the exponential function mentioned above.  

Students’ difficulties with the concepts of density and continuity 
The questionnaire was submitted at the second semester of the academic year 2015-2016 to 35 first 
year university students (group A1) and 69 students of second year university students (group A3) of 
the university of Montpellier. The results for group A1 are presented in (Durand-Guerrier & Vivier, 
2016). There are completed here by the results for the group A3.  

In the first question Q1, students were asked to provide, if possible, an interval with exactly two 
decimal numbers and to justify their answer. In both groups 20% did not answer this question, and 
25% (resp. 13%) of students in Group A1 (resp. A3) provide an answer showing that density of D is 
not recognized (eg. [0.1;0.2]). In the question Q2, students were asked to indicate what could be said 
of two numbers for which a calculator provided the same number with 12 digits. 63% of Group A1, 
and 88% of group A3 answered correctly that the distance between the two numbers was less than 
10-12; and 14% of group A1 and 6% of group A3 answered that the two numbers were equal. 

It is noticeable that for both questions the results are better in second year, than in first year, while in 
general there is not a specific work on intrinsic density in the first year analysis course in Montpellier. 
An explanation could be that this is an effect of the high failure rate at the end of the first year, that 
means that those students facing strong difficulties do not access the second year.  However, we 
cannot exclude the impact of using mathematics in other disciplines.  

Question Q5 focused on the distinction between D (or Q) and R. Students were asked to decide 
whether there was a solution to equation f(x)=2 in these sets of numbers, where f is a defined and 
continuous function on [-6.6] whose curve was given (the line y=2, not drawn, cuts once the curve of 
f). This is a direct application of the IVT. Success stagnated with 74% for A1 and 68% for A3 with 
also no improvement in the confusion between density and completeness (affirmation of the existence 
of a solution in D or Q) with 23% for A1 and 26% for A3. 

Question Q4, much more difficult than Q4, raised explicitly the distinction between density and 
completeness by discussing the existence of fixed points of a function from [0;1] to [0;1] given by a 
list of decimal values provided by a spreadsheet with two digits after the coma. In particular, the 
computed value for f(0.25) is 0.25. In the first case (Q4-a), the variation of f are indicated, but nothing 
is said about its continuity. As a consequence, the students cannot apply the IVT, so the answer is 
that it is not possible to decide whether there are fixed points or not. In the second case (Q4-b), f is 
assumed to be continuous. This allow to assert the existence of at least three fixed points in R because 
of the IVT. The rate of success for Q4-a is very low for both groups, and still lower for group A3 
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(23% for A1, 14% for A3). The rates are higher and similar for both groups for Q4-b (43% for A1, 
42% for A3). There is a lack in taking into account the characteristics of the spreadsheet and the 
properties of the function: on the one hand, many students, probably interpreting the displayed value 
in the table for f(0.25), answer that there is at least (or exactly) one fixed point (43% at Q4-a and 31% 
at Q4-b for A1 and 61% at Q4-a and 39% at Q4-b for A3); on the other hand, 31% of A1 students 
and 52% of A3 students give the same answer to both items.  

Our results show that, in our population, a majority of students seem to have a correct understanding 
of the notion of density, but feel strong difficulties to grasp the distinction of this notion with the 
notion of the completeness. This supports our claim of the necessity of addressing specific work on 
this distinction. This is the main goal of the didactical situation we present below.  

A situation to foster the distinction between density-in-itself and completeness.  

The mathematical question consists in searching for the functions f : E R satisfying the functional 
equation "xÎE "yÎE f(x+y) = f(x) f(y), where E is a usual numbers sets, Z, Q and R. We assume 
that f(1) = 2 and it can be proved that f(0)=1 and f takes positive values. We ask to compute some 
values of f (respectively, for each set, value of f at: 3 and -3; 1/3, -1/3, 1.3 and -1.3; Ö3 and -Ö3) and 
to draw graphical representations (on paper and with Geogebra software). A study in Chile with 6 
voluntary students by pairs was conducted in 2017 and, with some changes for in-service teachers, in 
Peru in 2018. The data are made of written answers and direct observation in both contexts.  

In the discrete case, Z set, there is a unique function which is defined by f(n)=2n. In addition to an 
induction, the functional equation must be algebraically used in order to use, for example, f(1+(-1)) 
to find f(-1)=1/2. There is a relative ease to work, only algebraically, with the Z set. Some graphical 
representations are drawn as a continuous line, but, with a commentary, quickly changed as a 
collection of discrete points. This phase is important in order to: (1) understand the problem; (2) 
produce a formula; (3) use the functional equation as a tool to compute values. 

In the density case, Q set, there are two difficulties. First, to compute values using algebraic properties 
of the functional equation such as f(a/b)b=f(a) for two integers a and b (b non-zero). This technical 
difficulty can be skiped with helps, sometimes only on numerical values. Second, to draw the 
graphical representation for the Q set. After the previous intervention on continuous lines in the 
discrete cases, the following question arises: do we draw a continuous line? 

While, in the first sets, the function is entirely determined by algebra and the calculation of a value 
f(a) yields to 2a, this is no longer the case for R where topological arguments, based on completeness, 
are needed and this constitutes a significant obstacle in the teaching of R. The most advanced Chilean 
pair (3rd and 4th year), and some Peruvian teachers, tried to prove algebraically, which is impossible, 
that f(Ö3)=2Ö3 and others assumed that for all x one has f(x)=2x without a proof. 

In Peru, after noting the failure to compute f(Ö3), it was asked to compute values of a function f that 
also satisfies f(Ö3)=1. Some pairs computed values and put some points in a graph, linking them by 
a line (figure 1, left). The function f is not increasing as they wrote, but with their graph the problem 
can be stated. Indeed, they computed f(Ö3+a), with a in Q, and one has the same points than in the Q 
case, but with a shift of Ö3 to the right… still with the previous “Q-points”.  
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Figure 1: a graphic for for R, Peruvian pair (to the left), a Geogebra graphic (to the right) 

Since 1 and Ö3 are Q-linear independent, hence: (1) one can assume any positive values at 1 and Ö3 
(and in any basis of the Q vector space R); (2) the density of the additive subgroup of R {a.1+b.Ö3; 
aÎQ, bÎQ} yields that the graph of f is dense in the half plane y>0. In Peru, it was asked by the 
searcher to investigate what happen in a Geogebra file with a point P(a.1+b.sqrt(3),2^a) in drag mode. 
The result (figure 1, right) is like a chaos that made the teachers be surprised (it is not exp !). 

Conclusion 
In this paper, we have tried to provide evidence that it is possible to work with university students on 
the distinction between density and completeness. Our study seems to show that there is a need of a 
specific work on this distinction for undergraduate students. This lead us to look for a didactical 
situation that helps in understanding the problem. We think that focusing more on calculations, 
formulas and favouring the use of a dynamic software would improve the situation.  

However, to foster this distinction between these two properties, it is worth completing the situation. 
We hypothesize that looking for an increasing function satisfying the functional equation will enhance 
the completeness property (in that case, there is a single function which is the usual exponential 2x).  
We have planned new experiments at various level of the university curriculum. 
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I describe a new approach to first-semester calculus using infinitesimals and I briefly summarize an 
assessment of its effectiveness in helping students interpret definite integral notation. 

Motivation and overview 
For two centuries, Calculus was “the infinitesimal calculus.” For its inventors, G. W. Leibniz 

and Isaac Newton, it was a set of techniques for finding differential equations from regular variable 
equations and vice versa. In the 19th century the calculus was reformulated in terms of limits, so 
integration and differentiation could be done without having to postulate the existence of infinitely 
small quantities. 20th century calculus textbooks have almost exclusively followed this approach, 
using limits rather than infinitesimals, not because the latter were hard for students to learn but 
because they were seen as insufficiently rigorous (Thompson, 1914).  

 One result of this transition from infinitesimals to limits is that although calculus courses still 
use the notation of Leibniz, this no longer refers to the same underlying concepts he used it to refer 
to. For Leibniz, dx was an infinitesimal increment and ∫ was a sum (big S for “summa”) of infinitely 
many infinitesimal bits. In standard calculus classes nowadays, these notations are vestiges that no 
longer directly represent quantities. For instance, in , the big S does not directly denote a 
sum, nor is the differential dx a quantity, and derivative notation “dy/dx” is code language for 

 rather than being a quotient of two quantities. 

I believe that this shift in signification has contributed to some of the difficulties students 
encounter when interpreting and modeling with calculus notation. For example, students typically 
emerge from calculus courses with impoverished interpretations of definite integral notation. Most of 
the undergraduates interviewed by Jones, Lim, & Chandler interpreted the notation  as 
either a gestalt area under a curve between x = a and b, or a call to find an anti-derivative for the 
function f(x) and evaluate it at a and b, or both (2016). Only 22% made any reference to summation 
of any kind, and less than 7% of them actually treated the notation as referring to a sum of pieces over 
a specified domain. Other studies have found similar phenomena (e.g., Fisher, Samuels, & Wangberg, 
2016), despite evidence that sum-based interpretations of the definite integral are by far the most 
productive for supporting student modeling and interpreting (e.g., Sealey, 2006; Jones, 2015). But 
when f(x)·dx is not really a bit of a quantity and ∫  does not really mean sum, is it surprising when 
students don’t readily interpret  as a sum of bits? 

The development of the hyperreal numbers in the 1960s makes it possible to ground 
infinitesimals in a secure rigorous mathematical foundation that was unavailable to Leibniz. A few 
calculus textbooks were written to this end (Keisler, 1986), but these are otherwise quite traditional 
and focused on “rigor” (formality). With this in mind, I have been piloting an informal infinitesimals 
approach to calculus. It uses infinitesimals and develops concept images for them like those used by 
Leibniz, with an eye to the formalizability of these later through the hyperreals (for more detail about 
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this formalizability, see the appendix of Ely 2017). One important concept image used for 
conceptualizing infinitesimals is an infinite microscope: zooming in infinitely on a point x reveals a 
little neighborhood or “monad” around x containing an entire world of new points that are all infinitely 
close to x. Zooming in infinitely again reveals a higher order of infinitesimals, each of which is 
infinitesimal even in comparison to ones at the previous scale. This image allows students to abstract 
from their intuitions about small quantities to develop a set of heuristics for rounding away higher-
order infinitesimals, akin to those used by Leibniz, to derive differential equations and derivatives. I 
note that this image of zooming draws upon a recently-introduced kind of covariational reasoning: 
scaling-continuous covariation (Ely & Ellis, 2018). This contrasts with smooth-continuous 
covariational reasoning, which Thompson and Carlson (2017) describe as entailing an image of two 
quantities changing smoothly, a coordinated motion that is parametrized by underlying conceptual 
time. While smooth-continuous covariation models Newton’s reasoning with calculus, scaling-
continuous covariation models the imagery Leibniz used. It uses the image that at any scale the 
continuum is still a continuum and never has holes or atoms, and that a variable takes on all values 
on the continuum. With this, one can imagine a re-scale to any arbitrarily small increment for x, 
coordinating that scaling with associated values for y. Ely & Ellis (2018) argue that scaling-
continuous covariation can be as powerful for calculus students as smooth-continuous reasoning, but 
only in an approach that does not fundamentally rely on an image of motion. 

This imagery allows differentials to directly represent infinitesimal bits of quantities, which 
lets students use their prior understandings to manipulate and interpret the notation. When dx is an 
infinitesimal increment, dy/dx really is a ratio of two infinitesimal quantities. This means the chain 
rule, , actually is cancellation of ratios. By invoking students’ prior knowledge of 
working with ratios, the notation can serve as a cognitive tool that suggests powerful and correct 
generalizations. This view is supported by recent work indicating that taking differentials seriously 
as quantities enables students to develop formulas through their own reasoning for volumes of 
rotation, work, and other ideas and applications in first-year calculus (Dray & Manogue, 2010). 

Two modes of interpreting definite integral notation using infinitesimals 
In the informal infinitesimals approach, a definite integral really is a sum of infinitesimal bits. 

This approach explicitly provides students with two different modes for working with and interpreting 
definite integral notation: the adding-up-pieces (AUP) mode and the multiplicatively-based 
summation (MBS) mode. These ideas are adapted from Jones (2015), and are detailed in Ely (2017). 
An example can illustrate and motivate the distinction between the AUP and MBS modes: 

By treating a curve as locally straight, we could see it as made of hypotenuses of right triangles 
with infinitesimal legs of lengths dx (uniform lengths) and dy (varying lengths). An arclength of such 
a curve from x = 0 to 1 would be viewed as the sum of these hypotenuse lengths: (i) 
But in order to evaluate this integral, by using the Fundamental Theorem of Calculus (FTC) and anti-
differentiation (or even by direct computer estimation), the integral must first be converted to a 
different form: we imagine all the dx’s as uniform in size and then being factored from the integrand, 

to get (ii) . If the curve is a function y = g(x), the integral is now of the form 
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 (where f(x) is ). So the integral can be evaluated by F(1) – F(0), for some 
F as an antiderivative of f.  

 Mode (i) is an example of adding-up-pieces (AUP): an integral  represents the sum of 
infinitely many infinitesimal pieces dA over the domain x = a to b (in the example above, A is 
arclength). This mode is appropriate for modeling situations with definite integrals—one worries 
about evaluating the integral later. Mode (ii) is an example of multiplicatively-based summation 
(MBS): the integral has the form , so now there is an integrand f(x), which is necessary 
for invoking the FTC. The integrand f(x) can be viewed as a rate at which A accumulates over the 
increment dx. If we are fortunate enough to recognize f(x)·dx as an infinitesimal increment of any 
“amounts function” F(x), we can find F(b) – F(a) to find out how much of A got accumulated between 
x = a and b. The MBS mode draws on Thompson’s (1994) development of the FTC by 
conceptualizing the integrand as a rate function, stressing the importance of students seeing the 
product f(x)·dx as having the same dimensionality and quantitative type as A.  

In a teaching experiment that used the informal infinitesimals approach, students 
demonstrated in interviews that they could effectively use the AUP mode on a modeling task with 
volumes, and that they could appropriately convert to the MBS mode (Ely, 2017).   

Assessing student interpreting of definite integral notation 
I was curious how the informal infinitesimals approach would scale up to a large lecture, so 

in Fall 2017 I taught a (treatment) lecture for first-semester calculus, and a colleague taught a standard 
calculus course (control). My colleague is recognized as being a very effective and experienced 
calculus instructor. A pre-assessment and post-assessment were administered in both classes. The 
pre-assessment included only items that were possible to answer correctly without  

 Item 3 Item 4 Item 8 

 pre- post- gain pre- post- gain post- 

Treatment (n = 92) 19.6% 69.6% +50.0% 27.2% 65.2% +38.0% 91.3% 

Control (n = 133) 24.8% 51.9% +27.1% 33.1% 37.6% +4.5% 58.6% 

Table 1: Assessment score comparison on items pertaining to definite integrals 
3. The function f(t) provides the velocity of a 
moving car in miles per hour at time t. Suppose 
∆t represents a time increment of 0.2 hours. 
What does f(t)∆t mean in this situation?  

a) The total velocity of the car during a 0.2-
hour period of time   

b) The integral of the velocity function for 
the car   

c)   The change in the car’s velocity during 
a 0.2-hour period of time   

d)   The change in the car’s position during 
a 0.2-hour period of time   

8.  A truck is dumping sand onto a scale. 
At each time t (in seconds) the sand is 
dumping out at a rate of f(t) tons/sec. 
Which of the following best represents the 
total weight of sand, in tons, that dumps 
onto the scale in the first 4 seconds? 

a)   

b)   
c)   

d)   
e)   

Figure 1: Sample assessment items 
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having taken calculus—they used concepts of rate and accumulation that are focused on in calculus, 
but did not require calculus notation and techniques. Figure 1 shows sample items (Item 3 uses ∆t 
instead of dt to be fair to the control class.) The post-assessment contained all these same items plus 
three more that explicitly used derivative and integral notation. Considering all the items on the pre-
assessment, the pre-/post- gain in mean score was significantly larger in the treatment class (+34.78%) 
than in the control class (+15.64%) (α = 0.05). The scores for the particular items that pertain to 
definite integration are included in Table 1. These suggest that the students from the treatment class 
learned more than the control students about interpreting definite integrals. 
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Introduction and embedding of the research 
Many students, who have to complete mathematics courses at university do not study mathematics as 
their major subject, but are enrolled in other disciplines. In these courses, the students need to learn 
the foundations of the mathematics required in their major discipline. This, in particular, includes 
knowledge of mathematical concepts that are important in these disciplines. However, literature 
shows that there are often discrepancies between the way mathematical concepts are taught in the 
students’ mathematics courses and the way they are used in their major discipline (Alpers, 2017; 
González-Martin, 2018). These discrepancies might lead to difficulties when the non-mathematics 
students are trying to make sense of the mathematics used in their major subject (Christensen, 2008). 
Hence, it is important to investigate, which knowledge of mathematical concepts students in 
mathematical service courses need in their major discipline.  

The research presented here focuses on economics, a discipline that had been rarely considered in 
mathematics education research. The mathematical concept chosen was the derivative because it 
plays a major role in economics, for example in economic theories like production or cost theory. The 
question ‘what knowledge of the derivative do economics students need’ was investigated by means 
of a textbook analysis because textbooks are often used as essential resources in economics courses.  

Methodology of the textbook analysis 
Two important economics textbooks (in Germany) were analyzed: the book “Introduction to general 
business administration” by Wöhe and Döring (2013) and the book “Basics of microeconomics” by 
Varian (2011). Both are standard references for economics and cover material all economics students 
need to learn. The aim of this textbook analysis was to reconstruct the knowledge of the derivative 
economics students need for understanding the material presented in these books.  

The chapters of the textbooks containing the derivative were analyzed with a two-step method based 
on a study by vom Hofe (1998), in which he investigated students’ conceptions of limit with a task 
focusing on the transition from the difference quotient to the derivative. In a first step, the description 
level, vom Hofe described the students’ statements related to the limit concept. In the following 
explanation level he tried to reconstruct the students’ conceptions of limit by explaining their 
statements on the basis of limit conceptions described in literature.  

For the textbook analysis presented here this two-step method by vom Hofe (1998) was adopted.  In 
the first step, the description level, the information presented in each paragraph of the chapters 
containing the derivative was summarized. In the second step, the explanation and reflection level, 
this information was explained in mathematical terms, and analyzed with respect to the question: 

“What knowledge of the derivative concept is needed to understand the material presented?”  
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Some Results of the Analysis 
Due to limited space, I will restrict the presentation of the results to three examples from the textbook 
by Wöhe and Döring (2013) discussed in the following subsections. 

The use of the derivative as “marginal function” 

The derivative occurs in the book by Wöhe and Döring (2013) for the first time in the chapter about 
cost (p. 293-305), in which it is introduced as marginal cost. The content concerning the use of the 
derivative as marginal cost is typical for its use as “marginal function” of other economic quantities 
like revenue, profit or utility as well.  

Description level: The chapter starts with the introduction of cost functions: represents the cost 
if an output  is produced. Thereby, different notions of cost are introduced (p. 299-303). Relevant 
with respect to the derivative is the marginal cost, which is defined as follows (p. 300):  

The marginal cost  is the cost of the last unit. Hence, you can determine the marginal cost of 
the 33th unit by subtracting the total cost of 32 unit from the total cost of 33 units. The marginal 
cost represents the slope of the original cost function. It can be determined by taking the derivative 
of the original cost function: .  

Explanation and reflection level: What is going on here is that the derivative is identified with its 
economic interpretation (here as cost of the last unit). In order to make sense of this definition of 
marginal cost, which may be contradictory if the students just relied on their knowledge concerning 
the derivative from school, the students need to know that the derivative is used as a linear 
approximation of the cost of the last unit here. Furthermore, the students need to know that in this 
identification one unit is assumed to be so small in the considered context that the error between 

 and is negligible (Wiese, 1999).  

The use of the derivative for the description and characterization of economic functions 

The next chapter in the book containing the derivative is the chapter about production and cost 
functions (p. 305-309). Here, the derivative is used to describe and characterize so-called “classical 
production and cost functions”. The use of the derivative in this chapter is typical for its use to 
describe other economic functions in the economic theory as well.  

Description level: Wöhe and Döring (2013) first introduce the “classical production function” in the 
context of the law of diminishing returns in agriculture (p. 305). If one increases the production factor 
“labor” by holding other factors, like the seeding material or the fertilizer, constant, the output first 
increases with increasing marginal product, in a second phase it increases with a decreasing marginal 
product, and finally decreases itself. Hence, the “classical production function” that follows this law 
has different stages. Wöhe and Döring illustrate them in a diagram like Fig. 1.  

They then describe the relationship between the product function , the marginal product   and 
the average product with  in the different stages. For example: In the second phase after 
the inflection point, the function  is increasing and concave,  decreases, and the average product 

 increases until it reaches its maximum at the tangential point , in which the ray from the origin 
equals the tangent of . Explanations why these relationships are valid are not given.  
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Fig. 7: Stages of the classical production function like in Wöhe and Döring (p. 306) 

Explanation and reflection level: To understand the relationship between  and  in Fig. 1 the 
students need to know the connection between the derivative and monotonicity/convexity. To 
understand why the graphs of  and  intersect in the tangential point  (reason:  is the slope 
of the ray from the origin through , which equals the tangent at ), students need to know 
the geometric representation of the derivative as slope of the tangent line, and they must be able to 
determine the slope of a linear function. Finally, to justify why  reaches its maximum at , one 
needs the differentiation rules and the condition  for optimal values because the function  
has a stationary point just at  ( ). 

The use of the derivative for optimization in price theory 

The aim of the price theory is to determine the price and the output for maximal profit of a company. 
The profit can be calculated as difference of revenue and cost: . The revenue is 
determined as product of price and output , whereas the price that can be set also depends on 
the output that is produced (  is, for example, assumed to be strictly decreasing in a monopoly 
market).  

Description level: Two methods are illustrated in Wöhe & Döring (2013) to determine the optimal 
output and the optimal price (p. 422-423). The first one is the use of a table of values, which does not 
rely on the derivative. The second method is a graphic one. It is illustrated in Fig. 2. No explanation 
is given, why the optimal output, price and the maximal profit are determined this way.  

 
Fig. 2: Graphical method in Wöhe and Döring (2013) for finding the optimal output and price 
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Explanation and reflection level: The graphical method of Fig. 2 is to apply a shift on the cost function 
until becomes the tangent line to the revenue function. The method works because at the point  
with maximal profit the derivative of  equals to zero. Therefore  and the slope of 
the tangent line of  equals the slope of . To understand why this graphical method works, the 
students therefore need to know the geometric representation of the derivative as slope of the tangent 
line and the necessary condition  for optimal values.  

Summary and discussion 
The examples presented here already show the necessity of the following knowledge concerning the 
derivative: 1) the economic interpretation of the derivative and its connection to the mathematical 
concept via linear approximation, 2) the geometric representation of the derivative as slope of the 
tangent line, 3) the connection between the derivative and monotonicity/convexity, 4) criteria for 
optimal values involving the derivative, and 5) the differentiation rules. In addition, the textbook 
analysis showed that the students also need to know the definition of the derivative (which could not 
be illustrated here due to limited space). Hence, economics students need a lot of knowledge 
concerning the derivative beyond calculation procedures. This knowledge was then needed to find 
answers or understand presented solutions to qualitative, theoretical problems.  

The way the derivative is used in economics textbooks, however, often does not coincide with the 
way it is taught in the mathematics textbooks. The latter mainly focus on calculation procedures. To 
reduce students’ difficulties when trying to make sense of the way the derivative is used in economics, 
the mathematics teaching should not just focus on these procedures to solve concrete calculation 
problems but also provide a rich knowledge of the derivative as a mathematical concept, that can be 
used to answer qualitative, theoretical problems like the ones presented here.  

References 
Alpers, B. (2017). Differences between the usage of mathematical concepts in engineering statics and 

engineering mathematics education. In R. Göller, R. Biehler, R. Hochmuth, & H.-G. Rück (Eds.), 
Proceedings of ‘Didactics of Mathematics in Higher Education as a Scientific Discipline’ (pp. 
137–141). Hannover, Germany. 

González-Martin, A. (2018). The use of integrals in Mechanics of Materials textbooks for engineering 
students: the case of the first moment of an area. In V. Durand-Guerrier, R. Hochmuth, S. 
Goodchild & N.M Hogstad (Eds.), Proceedings of the 2nd INDRUM conference (pp. 115–124). 
Kristiansand, Norway. 

Christensen, O. R. (2008). Closing the gap between formalism and application—PBL and 
mathematical skills in engineering. Teaching Mathematics and Its Applications, 27(3), 131-139. 

Varian, H. R. (2011). Grundzüge der Mikroökonomik [Basics of microeconomics]. Munique, 
Germany: Oldenbourg. 

Vom Hofe, R. (1998). Probleme mit dem Grenzwert — Genetische Begriffsbildung und geistige 
Hindernisse. Journal für Mathematik-Didaktik, 19(4), 257-291.  

Wiese (1999). Mikroökonomik [microeconomics]. Heidelberg, Germany, Springer. 
Wöhe, G., & Döring, U. (2013). Einführung in die allgemeine Betriebswirtschaftslehre [Introduction 

to general business administration]. Munique, Germany: Vahlen. 

optx
'P )'( ) '(opt optR C xx =

R C

'( ) 0f x =



 

 

 99 

What happens after Calculus? Examples of the use of integrals in 
engineering: the case of Electromagnetism 

Alejandro S. González-Martín1 and Gisela Hernandes-Gomes2 

Département de Didactique, Université de Montréal, Canada;  
1 a.gonzalez-martin@umontreal.ca; 2 gisela.hernandes.gomes@umontreal.ca 

Introduction 
Research on mathematics as a service course has been attracting more and more attention in recent 
years. This may be due in part to the high enrolment numbers seen in graduate mathematics courses 
(calculus in particular) driven by the lure of a STEM career. It could also be due to the high failure 
and dropout rates in these courses and their associated programs (Artigue, Batanero, & Kent, 2007; 
Faulkner, Earl, & Herman, 2019; Rasmussen & Ellis, 2013). Research has identified a gap between 
the content presented in mathematics courses and the way this content is used in professional courses 
(Christensen, 2008). This can leave students – and stakeholders – questioning the pertinence of 
mathematics course content. 

Currently there is scant research examining how mathematical content is used in professional courses. 
We aim to close that gap. Our recent work focused on how integrals are used in a civil engineering 
course (Strength of Materials) to define bending moments for beams (González-Martín & Hernandes 
Gomes, 2017) and to define first moments of an area and centroids (González-Martín & Hernandes 
Gomes, 2018). Our results show that although integrals are used to define these notions, the methods 
used to solve tasks do not require techniques taught in prerequisite calculus courses. Rather, the 
conceptual aspects of integrals are used to introduce and define these notions (in particular, their 
interpretation in terms of area), and the assigned tasks mostly employ geometric calculations and 
ready-to-use formulae. We aim to expand our analysis to other engineering courses in which integrals 
are used to define notions, to determine whether this is a common phenomenon. In particular, we seek 
to identify how much calculus content is required to introduce these notions, and whether the tasks 
employed require the techniques learned in calculus courses. In this paper, we discuss our ongoing 
results concerning the content related to electromagnetism in an electrical engineering course, 
General and Experimental Physics. 

Theoretical framework 
We consider professional and mathematics courses in engineering to be different institutions, each 
with its own set of tasks and practices. In analysing practices, we employ tools from the 
anthropological theory of the didactic (ATD – Chevallard, 1999), specifically the notion of 
praxeology. A praxeology [T/τ/θ/Θ] has four elements: a task T to perform, a technique τ which allows 
the task to be completed, a rationale (technology) θ that explains and justifies the technique, and a 
theory Θ that includes the discourse. To analyse what an institution considers as ‘knowing the content 
X,’ we need to analyse the tasks that use X, as well as the techniques and rationales (both implicit and 
explicit) used to justify these techniques. ATD distinguishes between different types of praxeology, 
but due to space constraints we are limiting our presentation to tasks and techniques. 
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It should be noted that ATD recognizes that knowledge and praxeologies can be created in one 
institution but used in another. This process imposes a transposition effect on the praxeologies in 
question (Chevallard, 1999), in which some (or all) elements of the original praxeology change and 
evolve. We consider this construct to be especially useful, particularly because we are interested in 
identifying possible gaps between the content of calculus courses and its use in engineering courses. 

Methodology 
We are currently analysing reference books used in various engineering courses. In this paper, we 
consider Halliday, Resnick, & Walker (2014), used in General and Experimental Physics, and Stewart 
(2012), used as a Calculus textbook. We proceeded in two stages: First, we analysed the general 
structure of the content related to integrals in Stewart (2012), identifying the main tasks concerning 
integrals as well as the techniques and rationales (technology) used to solve these tasks. Second, we 
analysed Halliday et al. (2014), identifying the notions defined as an integral and the tasks that involve 
these notions, as well as the techniques and explanations (technology) presented. This allowed us to 
pinpoint the different praxeologies where integrals are used in both courses. 

Data analysis 
To date, we have identified several notions that are defined as an integral in the engineering textbook 
(Halliday et al. (2014), including the following: electric field (E), electric flux (Φ), electric potential 
(V), Gauss’ law, potential energy (U), and work (W). 

In the Calculus textbook, the content regarding integrals is organised into two main blocks (González-
Martín & Hernandes-Gomes, 2017, 2018): the first block introduces techniques for calculating 
indefinite integrals (immediate integration to begin with, followed by various integration techniques). 
We note that theoretical elements justifying the different integration methods are mostly absent. The 
second block introduces Riemann sums to formally define integrals and interpret them as areas, and 
leads to the Fundamental Theorem of Calculus and the calculation of definite integrals using Barrow’s 
rule; the book then provides applications of the integral (area, volume, etc.). Many of the techniques 
used in this second block are based on elements explored in the first one. 

Regarding the General and Experimental Physics textbook, to date we have analysed the chapters on 
electromagnetism (chapters 21 to 24). Our results are similar to those of our previous research 
concerning a Strength of Materials textbook (González-Martín & Hernandes-Gomes, 2017, 2018). 
Integrals are used mostly to introduce and define notions proper to electrical engineering, and it is 
rather the interpretation of an integral that allows for a proper analysis of the phenomena studied. For 
instance, the definition of the electric potential V at a point P in terms of the work W done by the 
electric force and resulting potential energy U is V =  (Halliday et al., 2014, p. 686). 

Moreover, the work done by a general variable force can be calculated by a definite integral:  
W =  (p. 163). This means that both work (W) and electric potential (V) are defined using 

integrals. Regarding the tasks, most techniques call for the use of given properties or tables, which 
means that students can solve them without consciously using integrals (as in the Strength of 
Materials course). For instance, Figure 1 shows one solved exercise that uses ready-to-use formulae. 
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The technique required to solve this task makes use of an available equation (24-41:  ,   p. 

702), and the derivation of a square root and a linear term. 

 
Figure 1 – Example of problem involving electric potential (Halliday et al., 2014, p. 702) 

However, we note that the expression for V is deduced in a theoretical section using integrals:           V 
=  =  (p. 700). This integral is calculated employing a 

technique calling for the use of a table of antiderivatives provided at the end of the book. We note 
that Stewart (2012) calculates this type of integral using trigonometric substitution (p. 478). 
Therefore, although the section on Electromagnetism in Halliday et al. (2014) uses more complex 
functions than the Strength of Materials book, they only appear in the theoretical sections, their 
antiderivative is calculated using tables found at the end of the book, and only the result is needed to 
solve problems. 

Final remarks 
Our previous results regarding the notions of bending moment and first moment of an area (González-
Martín & Hernandes-Gomes, 2017, 2018, respectively) indicated that these two notions, although 
defined using integrals, are used in praxeologies that are quite different from typical calculus course 
praxeologies. Curious about whether this phenomenon is repeated in other engineering courses and 
in other topics, we analysed the reference book used in another course, in a different subfield of 
engineering. 

While still incomplete, our results point to the same conclusion: the praxeologies of this course are 
very different from praxeologies found in calculus courses, which may be at the origin of the gap 
identified by researchers (Christensen, 2008). Our partial results indicate that although the Strength 
of Materials and General and Experimental Physics courses use integrals to define notions proper to 
engineering, the justifications given do not go into the same level of detail as in calculus courses. 
Indeed, some properties are simply stated as a rule, without any explicit justification (which could be 
provided using tools from calculus). Regarding the tasks to solve, the books’ techniques usually call 
for the use of geometric considerations, tables and ready-to-use formulae. As for the small number of 
tasks that require an integral to be computed, they either call for very simple functions or provide 
tables for students to calculate the antiderivative. 

Our results seem to confirm the gap identified in the literature. We believe that by analysing the 
content of professional courses and understanding how calculus content is used in them, we can better 
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address questions concerning the adequacy of calculus courses in the training of engineers. Given the 
failure and dropout rates in engineering programs (and in STEM programs in general), research on 
these issues is urgent. 
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For the past decade, I have been a part of a large research team studying college calculus. This 
research team has been led by David Bressoud, run under the auspices of the MAA, and funded by 
the NSF. Our research has come from two projects, the first (Characteristics of Successful Programs 
in College Calculus (CSPCC)) begun in 2009 and focused on mainstream college differential calculus 
programs (typically called Calculus I) at all institution types; the second (Progress through Calculus 
(PtC)) begun in 2014 and focused on precalculus, differential and integral calculus programs at 
Masters and PhD-granting institutions. Our work has been generally focused on identifying aspects 
of college calculus programs that are successful or innovative, and supporting more mathematics 
departments as they work to improve their programs based on these findings. Overall, we did not see 
great evidence of success in college calculus across the US. Among the students surveyed, we saw 
significant decreases in confidence, enjoyment, and interest in continuing to study mathematics 
(Bressoud et al., 2013), and we found that nearly 18% switched out of the calculus sequence after 
taking differential calculus, with women switching significantly more often than men of similar 
preparation and experiences (Ellis, Fosdick, & Rasmussen, 2016).  

From the 213 schools that participated in the CSPCC survey, we identified 18 schools that showed 
promise, including community colleges, Bachelor’s-granting, Master’s-granting, and PhD-granting 
schools. We conducted case studies at these sites and, based on these case-studies, have identified a 
number of components of calculus programs potentially related to student success. From the five 
doctoral-granting departments we visited, we identified seven features that were common and that we 
believed were related to their program’s success and that worked together to engender student success  
(Rasmussen, Ellis, Zazkis, & Bressoud, 2014). These seven features include (1) a coordinated 
program where (2) instructors, especially novice instructors, are supported to teach and to develop a 
sense of shared ownership over the course; (3) the students are placed into the highest course in which 
they can succeed, (4) the curriculum actively engages students in (5) cognitively demanding tasks, 
and (6) there is support (such as calculus specific tutoring centers) towards students’ success in these 
courses; and (7) the department collects data about multiple aspects of the program to understand 
areas for improvement.  

Since publishing those findings, we have seen a number of calculus programs across the US use these 
findings to guide improvements in their own programs, showing the impact that such studies can have 
on shifting the national landscape of calculus education. However, I have recently argued that by 
focusing on these seven characteristics alone, departments may foster inequities by further supporting 
the populations of students who are already successful in calculus. Instead, I argue that departments 
should explicitly attend to diversity, equity, and inclusion while also improving their programs 
through focus on the seven characteristics (Hagman, accepted). 
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The Future of College Calculus: Respond to today’s students’ needs 
Through the PtC work, I hoped to find a mathematics department where the calculus program was 
thoughtfully crafted to best support today’s college students – a more diverse population of students, 
that includes more students of color, and more first-generation and low-income students than before 
(Eagan et al., 2014). We did not find a program that had an explicit focus on supporting a diverse 
population of students to thrive in mathematics, but we did see a calculus program developed to 
support every student in their construction of mathematical meanings in calculus. This program was 
developed based on research rooted in radical constructivism, and not with an explicit attention to 
equity. However, I believe this program affords an anti-deficit approach to mathematics by viewing 
every student’s mathematical understanding as valuable and part of the construction of richer 
mathematical meanings. This calculus program illustrates that by sincerely valuing every student’s 
mathematical understandings, and leveraging research to support each student’s rich construction of 
mathematical meaning, a diverse population of college calculus students can mathematically thrive.  

Background on DIRACC 

Project DIRACC (Developing and Investigating a Rigorous Approach to Conceptual Calculus) is an 
NSF-funded college calculus curriculum developed by Pat Thompson and his colleagues based on 
years of research on student understandings of calculus (see Thompson, Byerley, and Hatfield (2013) 
for a description). This curriculum is self-described as “Newton meets Technology”, focusing on 
developing meaning for infinitesimals and differentials (while utilizing animations and interactive 
apps) rather than emphasizing the notation and formality of Leibniz. This curriculum is shared online 
for free, and is currently being implemented in at least two large, public, doctoral granting 
mathematics departments, including one involved in Progress through Calculus. In this short report, 
I will draw on my experience at the one university involved in PtC (referred to as Large State 
University; LSU), where DIRACC is the curriculum used for all calculus courses for science, 
computer science, and mathematics majors. The undergraduate population of LSU is approximately 
50% white students, 20% Hispanic and Latinx students, 7% Asian, and 5% Black and African 
American. In the DIRACC calculus courses I observed, I estimated that approximately 30% of 
students were Black, Latinx, and/or Native (based on appearance). At LSU, there is a separate (and 
more procedurally oriented) college calculus course for engineering majors. The DIRACC courses 
are taught by instructors, mathematics education faculty, and doctoral students pursuing degrees in 
pure and applied mathematics and mathematics education. This course is coordinated by a full-time 
instructor, and this coordination includes weekly meetings for all instructors, where the topics of 
discussion during the meetings include understanding the mathematics and student thinking related 
to the mathematics for the upcoming section. Preliminary results from PtC indicate that students in 
DIRACC outperform students at comparable universities on a calculus content assessment and 
maintain positive beliefs towards mathematics more than students at other institutions.  

Shift in Curriculum 

To best serve the students in our calculus classes, we need to learn what is motivating them to pursue 
degrees requiring calculus – whether future career goals or general interest in learning – and rethink 
our calculus curriculum to be in line with these interests. It is well established that in today’s 
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economy, STEM jobs pay significantly more, on average, than non-STEM jobs (NSB, 2018). Given 
this widespread knowledge, we cannot ignore that one contributing motivation for students to pursue 
STEM is future job and wage prospects. When sitting in Calculus I classes across the country, it often 
seems that everyone knows the students are there not to learn deep and interesting mathematics, but 
to get a grade in the course that allows them to continue pursing whatever STEM degree they are 
hoping for in order to get a good job. I believe that we are missing a big opportunity in our calculus 
classes to inspire these STEM-intending students about the magic and beauty of calculus. The great 
majority of calculus courses I have visited have been “mainstream” courses, meaning to serve all 
STEM students, although in actuality the great majority of the content is driven by the needs of the 
engineering students, with occasional word problems being set in other contexts.  

In a forward-thinking calculus system, there would be a meaningful connection between the content 
taught in calculus, the needs of the majors whose students are taking calculus, and the interests and 
motivations of the students enrolled in our courses. It would be these latter two driving the content, 
rather than historical precedents. The DIRACC curriculum achieves this by forgoing Leibniz’s 
precise notation in favor of Newton’s more intuitive ideas – skipping the formalities of ideas such as 
limit to spend more time supporting students to understand the ideas of infinitesimals and how this 
can support meaningful understanding of rate of change functions and accumulation functions. This 
curriculum was designed explicitly to support students in developing rich mathematical meanings, 
and is thus inherently responsive to how students think about calculus and what todays’ students 
should be learning in a calculus course. As currently taught, I witnessed this curriculum equitably 
engaging a racially diverse student population in rich mathematics. This curriculum could go further 
in the future by engaging the diverse learners as whole people, by situating the mathematical content 
in contexts that are especially interesting and relevant for them (where these contexts could be 
identified by talking to students and using local data to identify trends in women and students of 
color’s majors).  

Shift in Pedagogy 

Through PtC, I observed three DIRACC calculus courses at LSU, and though the three courses looked 
different, in each I witnessed a racially diverse group of students equitably engaging in rich 
mathematics, contributing to constructing mathematical meaning as a class. In one class, the 
instructor stood in front of a 40-person class, while he randomly selected students to answer questions 
related to a context problem they worked on. The questions he asked were substantive and open 
ended, allowing every student to contribute thinking related to the question rather than simply 
answering correctly or incorrectly. The second class was a 120-person class where the instructor 
presented a slide presentation wearing a microphone, with three Learning Assistants circulating the 
room, and students discussing problems in small groups. The third class was a 30-person class where 
students spent the entire class working in groups of three-four on rich tasks while the instructor floated 
around the room, visiting with individual groups, and then bringing the class together for a whole-
class discussion. The common element of these courses, in addition to the content being taught, was 
that the instructors authentically cared to understand what their students were thinking related to the 
mathematics, and that the instructors used this understanding of their students’ thinking to connect 
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the mathematics to the students’ understanding of the mathematics – what Hackenberg (2005) has 
called exhibiting mathematical caring relations.  

A forward thinking calculus program should be developed so that calculus courses, including the 
class-time, course topics, and out-of-class assignments, are designed to encourage a diverse set of 
students to succeed in the course as well as in courses building on calculus and in their STEM careers. 
The DIRACC curriculum and its enactment at LSU illustrate such a program by centering the 
mathematics, and every individual student’s construction of the mathematics, as the guiding forces.  
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There is a scarcity of analyses of teacher decision making in the context of calculus instruction. We 
promote such a discussion, motivated, on the one hand on the breadth of considerations of the 
practical rationality framework (Chazan et al., 2016) and on the other hand on the diverse institutional 
manifestations of calculus education in the U. S. Calculus is taught in US universities, two-year, 
community colleges (CC), and high schools (HS). These diverse contexts are tied to a diversity of 
roles calculus courses play for institutions and for students, which creates conditions and constraints 
for the teacher’s work. It is likely that the work of the teacher teaching calculus will be influenced by 
considerations that go beyond the discipline and its applications, or the students’ learning resources 
and difficulties. How can we conceive of an agenda for research on the teaching of calculus that can 
be prepared to attend to the various considerations a teacher needs to make?  

Practical rationality  
Practical rationality seeks to understand the rationality behind what teachers do. It postulates that 
teachers’ actions result from a sensibility and can be understood as reasonable outcomes of a teacher’s 
adaptation to their conditions of work. Practical rationality adds to usual considerations of  teacher 
agency and knowledge, explicit attention to various types of context in activating such agency and 
knowledge and in providing sources of justification for possible decisions. Two important constructs, 
helpful to to understand these different types of context and create instruments to gauge their 
influence are the notions of instructional norm and professional obligation.  

The notion instructional norm, alludes to resources and constraints available in the work of 
instruction—the work of transacting target mathematical knowledge and mathematical work with 
students. The notion of norm asserts that there are some regularities in the communication of 
knowledge in which teacher and student are involved. Some of those regularities issue from the global 
didactical contract that, for example, binds the instructor and the students to a course of studies such 
as calculus (e.g., the notion that if the calculus instructor poses a real-world problem to students, they 
are expected to make use of what they know from the class to solve the problem). More specific 
regularities concern what Herbst and Chazan (2012) call instructional situations. These situational 
norms bind instructor and students in regard to the specific mathematical work to be done (e.g., the 
separation between the work one does informally to find an appropriate value for δ and what one 
writes or shows, when using a value of δ to prove a limit by definition).  

The notion of professional obligation, alludes to resources and constraints available for a mathematics 
teacher employed in an educational institution—hence hired to play a role in a range of activities, one 
of which is instruction. Herbst and Chazan (2012) name four of these obligations: to the discipline of 
mathematics, to individual students, to society and social groups such as a class, and to the institutions 
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that make room for instruction. In this paper we illustrate how the obligations, might help understand 
the different professional positions of calculus instructors. To do that we focus on one important 
institutional distinction in the teaching of calculus in the United States. 

The teaching of calculus in the United States 
In the United States as in many other countries, Calculus is taught both in colleges and in HSs. 
Champion and Mesa (2018) report that 19% of all HS students in the US take Calculus. These mostly 
affluent students do so in the context of the Advanced Placement (AP) program, which consists of a 
yearlong course culminating in a standardized exam that may provide students with college credit. 
Offering AP courses is usually a marker of prestige for HSs and having taken AP classes is a marker 
of ambition for students in college admissions. Around 43% of those students (or 8% of all HS 
students) score 4 or 5 in the exam, hence actually receive college credit. In HSs, being asked to teach 
calculus is an aspiration for the best trained and most ambitious teachers. Likewise, in two-year CCs, 
the teaching of calculus is a small operation and the assignment to teach those classes is reserved for 
instructors with experience and prestige (Bressoud, Mesa, & Rasmussen, 2015). In contrast, while 
only a minority of students take calculus in four-year colleges and universities, the usual calculus 
sequence is a prerequisite for studies in science, technology, engineering, and mathematics. The 
teaching of calculus in US universities is the largest operation carried out by mathematics 
departments, usually employing a variety of instructors, tenure stream faculty as well as temporary 
lecturers and graduate students (Hagman, Johnson, & Fosdick, 2017). So, while the content of 
instruction in calculus courses may bear important resemblances across contexts, the institutional 
context in which the courses are situated and the position of instructors may vary.  

We believe the practical rationality framework may be useful in ascertaining these differences. To 
illustrate this, we bring in items from an assessment that we have developed to gauge the extent to 
which instructors recognize the professional obligations of mathematics teaching defined above. We 
speculate how the recognition of these obligations may differ across the three sites noted above. 

Instructors’ recognition of the professional obligations of mathematics teaching 
The PROSE (Professional Obligations Scenario Evaluation) instrument presents instructors with 
short classroom scenarios in which an instructor departs from the plan of the lesson to attend to an 
issue related to the various obligations. It asks respondents to indicate their agreement with the 
decision the instructor has made. We use examples of these items to illustrate how institutional 
context may matter in the extent of instructors’ agreement with those decisions.  

Interpersonal Obligation  

Consider item A3145, which presents an instructor who is teaching about implicit differentiation and 
provides an example related to the speed of the mallet of a polo player. Some students are engaged 
discussing the example, but upon realizing that other students don’t know the game of polo, the 
instructor changes the example to one of a moving observer who sees a car approaching. Respondents 
are asked to indicate how much they agree that the instructor should have continued discussing the 
initial example instead of changing it. The item represents one way in which the interpersonal 
obligation (to society and social groups) might impact instructional decisions: The depicted instructor 
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appears to have tried to repair social class differences associated with knowing polo, an affluent 
people’s game. We conjecture that an item like this might generate different responses for HS calculus 
instructors and for CC calculus instructors (whose students tend to come from blue collar 
backgrounds). Also representing the interpersonal obligation is item A3025. A student repeatedly 
volunteers input on how to solve an optimization problem on fencing an area of land. Respondents 
are asked to indicate the extent to which they agree the instructor should continue to encourage the 
one student’s participation, rather than seek a response from a different student. The interpersonal 
obligation is at stake because the instructor’s choices affect what type of participation is fostered 
among the students. We expect that HS calculus instructors would be more inclined than college 
instructors to closely monitor student participation, as the latter might be more likely to think of 
students as adults who can claim space on their own.  

Individual Obligation  

Item A4095 exemplifies the individual obligation. An instructor asks students to use the definition of 
the derivative of a function to find the derivative of g(x) = x2. A student eagerly says that he has 
learned from someone else a quicker way of calculating the derivative of that function. The instructor 
asks the student to come up to the board and show his method. Respondents are asked to indicate the 
extent to which they agree that the instructor should have ignored the eager student. This item was 
created to represent a way in which the individual obligation (to students’ cognitive and emotional 
needs) might impact instructional decisions. We expect that, while all respondents might be keen to 
see an individual student who is eager to participate, university instructors might be less inclined than 
CC and HS instructors to make room for such enthusiasm for shortcuts before students know how to 
use the definition of derivative. CC instructors are known to prioritize giving students a sense of 
achievement and self-confidence at the cost of giving novel, challenging mathematical tasks (Mesa, 
et al., 2014). Meanwhile, HS instructors might be more concerned with preparation on standardized 
tests than with the mathematical justification of techniques.  

Disciplinary Obligation  

Consider item A1125 in which a calculus instructor has been discussing some problems about 
geometric series. After finishing a problem, he second guesses his plan to go on to the next problem 
and announces that he would like students to find for which ratio a geometric series would have a 
sum of 3/2. Respondents are asked to indicate the extent to which they agree that the instructor should 
have continued with the next problem instead of asking a question that was outside the plan. This 
item was created to represent a way in which the disciplinary obligation (to the discipline of 
mathematics) might impact instructional decisions, as high recognition of this obligation would 
justify holding off the next problem to ask a mathematically interesting question. We anticipate that 
HS instructors, who are accountable to follow the AP preparation program, would be more likely than 
college instructors to expect the instructor to go to the following problem. College instructors might 
also have more liberty to pose problems that they find mathematically engaging.  

Institutional Obligation  

In item A2115 an instructor says that as they are done with implicit differentiation, they will start 
with related rates. Students ask him to review a problem on implicit differentiation, but he says that 
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as the other sections of the class are already past related rates, they have to catch up. Respondents are 
asked to indicate the extent to which they agree that the instructor should have answered the questions 
the students had instead of moving on to the next topic. The item represents how the institutional 
obligation (with the pacing chart) may impact decision making. While individuals who have a high 
recognition of this obligation would be expected to support the decision of the instructor in the 
scenario, we also expect college instructors of calculus courses taught for many sections with 
coordinated exams would be more sympathetic with the decision made in the scenario than other 
instructors would. We expect that college instructors might solve this dilemma by offloading the 
question to office hours, which HS teachers do not have as a resource.  

Conclusion 
The eight items discussed illustrate a span of considerations to justify departures from instructional 
norms that may be justified by the professional obligations postulated. The items also illustrate how 
the obligations and the instances for their application can reveal aspects in which the context of 
calculus instruction varies. Indeed, while the obligations apply to instructors across institutions where 
calculus is offered, the role that calculus plays in those institutions affects not only who gets to teach 
calculus but also, we conjecture, how these individuals make instructional decisions. More important 
than the specific responses to these items, however, is to explore decisions in which the selective 
nature of the group of students, the institutional structures for course management, and others such 
issues may explain how calculus instructors may make different decisions for similar instructional 
circumstances when those circumstances arise in different institutional contexts. 
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Introduction  
The transition of students from studying secondary to tertiary mathematics has been the subject of 
increasing research interest in recent years. One relatively new research area is into the perspectives 
of teachers and lecturers on this transition. Hong et al. (2009) compared teachers’ and lecturers’ 
perspectives of calculus teaching and learning. They found that teachers lack a clear understanding 
of the issues involved in the transition, there is a greater use of technology at tertiary level, tertiary 
institutions are better resourced, there is a more formal treatment of mathematical content in tertiary 
teaching, and secondary teachers interact more with their students.  

Klymchuk, Gruenwald, and Jovanoski (2011) surveyed 63 lecturers from 24 countries on why they 
thought students found university mathematics difficult. Klymchuk et al. found that there is a lack of 
knowledge and awareness by university lecturers of what is happening at school, both in terms of 
content and teaching approaches. 

In their paper on two practical aspects of the secondary-tertiary interface – teaching style and 
assessment – Thomas and Klymchuk (2012) found that teachers and lecturers each lack a clear 
understanding of the issues involved in the transition from the other group's perspective, and state 
there is a need for improved communication between the two groups. 

Apart from Hong et al., little research appears to have been undertaken on the secondary-tertiary 
transition from a calculus perspective. This paper goes some way to filling this gap. It reports on one 
part of a larger, two-year longitudinal study on issues in students’ transition from secondary to tertiary 
mathematics study in Australia.  

Methodology 
In the first part of the longitudinal study, 750 students completed eight mathematics questions on pre-
calculus and calculus topics taken from the Queensland and Australian school syllabi. The students 
were comprised of 470 Intermediate Mathematics (IM) only students and 280 students studying both 
Intermediate and Advanced Mathematics (AM). Responses were coded according to their displayed 
level of understanding. Teachers and lecturers were asked how difficult they thought students would 
find each question. Response options were: very hard, hard, neither hard nor easy, easy, and very 
easy, and comments could be included. Fifty teachers and 16 lecturers from across Queensland 
responded. In each of the eight questions, the Fisher Exact Test was used to determine whether there 
was a significant difference in perspective between the teachers and lecturers. This paper reports on 
the results for the following question, involving the limit definition of the derivative.  

Q. The definition of the derivative (or the derivative from first principles) is given by the following: 



 

 

 112 

  or   

(a) What does this definition mean? 

(b) Use this definition to determine , where   

Results 
Part (a) IM students (n=470) results: 2% correct, 28% partially correct, 36% wrong, and 35% blank. 
AM (n=280) results: 12% correct, 47% partially correct, 21% wrong, and 20% blank. 

Teachers’ perspectives were: 54% hard or very hard, 29% neither hard nor easy, and 17% easy or 
very easy. Lecturers’ perspectives were: 81% hard or very hard, 6% neither hard nor easy, and 13% 
easy or very easy. There was a statistically significant difference (p<0.01) between the teachers’ and 
lecturers’ perspectives. Teachers and lecturers provided many comments on this question. One point 
of particular interest was the teacher comments regarding the intended and enacted curriculum. 
Several teachers said that the meaning of the limit definition of the derivative was no longer in the 
syllabus and therefore not taught anymore, hence students would have difficulty with this question.  

They would possibly not have been asked to reproduce such a response before and the syllabus 
does not explicitly require students to explain the meaning of the derivative from first principles, 
merely to use it. 

However, other comments indicated that teachers were in fact teaching the limit definition.  

This is a great question. I feel few students in Queensland would be able to answer this question 
well. I have streamed classes with top maths students, I would be disappointed if most couldn't 
provide an adequate answer. 

The IM syllabus, unlike the AM syllabus, is the same for all schools in Queensland. Theoretically, 
therefore, all students should be taught the same material. Despite what some teachers said, the 
conceptual understanding of the derivative is included in the syllabus. It is apparent from the teacher 
comments that not all teachers are teaching the same content and that there are different experiences 
depending on the school and the individual teacher.  

There were a number of teachers who thought that students would be able to correctly answer the 
question. However, other teachers thought differently. Comments included:  

As it is an integral part of the course I would be surprised if most of the students did not recognise 
it and be able to explain what it means. 

Even though it's been carefully explained when calculus is first introduced, students tend to "move 
on" from anything like proof or in this case a fundamental concept explanation, unless we have 
repeatedly emphasised it.  Sad.  Many schools and teachers don't value the fundamental concepts 
- they just want action, so you don't see many questions of this type any more. 

A comment from one lecturer merits further discussion:  

I would normally not expect a high school student to give a reasonable response to this question 
because too many high school math teachers couldn't either. 
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As the surveys were anonymous it is not possible to explore this comment with the particular lecturer. 
Klymchuk et al. (2011) found that there is a lack of knowledge and awareness by university lecturers 
of what is happening at school, but they did not specifically ask lecturers for their perspectives on 
secondary school teachers. There appears to be no literature specifically on this area, suggesting a 
topic for future research. Certainly the lecturer quoted above appears to have a negative opinion of 
secondary school teachers, although it must be noted that the lecturer stated they have no formal 
teaching qualifications. It can be said that very few university mathematics lecturers in Australia have 
formal teaching qualifications. 

Part (b) IM students (n=470) results: 13% correct, 10% partially correct, 50% wrong, and 26% blank. 
AM (n=280) results: 42% correct, 15% partially correct, 29% wrong, and 12% blank. 

Teachers’ perspectives were: 23% hard or very hard, 33% neither hard nor easy, and 44% easy or 
very easy. Lecturers’ perspectives were: 81% hard or very hard, 12% neither hard nor easy, and 7% 
easy or very easy. There was again a statistically significant difference (p<0.001) between the 
perspectives of teachers and lecturers. Nearly all of the lecturers thought that students would find this 
question difficult, whereas the teachers were more inclined to think that students would find this 
question easy. Comments from teachers (T) and lecturers (L) included:  

(T) I think every Year 12 Maths B student would know that even if they knew nothing else. 

(T) Some would just answer 2x. Others may substitute x+h into the function & expand, collect like 
terms. Very few would be able to separate the fraction & show how the solution is obtained. 

(T) I anticipate my students will only remember the short cuts, not how to apply the limit, but this 
is something most of them could attempt. 

(L) I would expect year 12 students would be able to substitute the function into the definition and 
use simple algebra to work it out. Some students might have problems with the algebra.  

(L) f(x + h) = x2 + h   or     f(x + h) = x2 + h2    or   f(x+h) = f(x)+f(h). 

(L) Do you mean how *should* they respond, or how *will* they respond? They *will* respond 
in exactly the same way their teacher provided in examples, which they will look through their 
notes for and copy. If they don't, communication will be very poor. Most students, except the good 
advanced maths students, will be stuck at (x+h)2, *if* they get that far. 

The student answers and the teacher and lecturer comments raise two questions:  

1. Why were the teachers so divided in their opinions of whether students could successfully 
find a derivative from first principles? 

2. What are the implications of teachers and lecturers holding different perceptions of students’ 
calculus skills and understanding? 

For the first question, there may be several reasons for the difference in teacher perspectives. The 
teachers who thought that students could do this question easily may have worked through multiple 
examples using the limit definition of the derivative, or they believed their students had good algebra 
skills.  The teachers who thought that students would have difficulty may not have spent much time 
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on the limit definition, or they may have thought that the amount of time that had passed between 
teaching the limit definition and students completing this survey was too great for students to 
remember. Given the low success rate in this question – 13% for IM students – it was clearly the case 
that the teachers were too optimistic.  

For the second question, there are considerable implications for students transitioning to university 
mathematics and the lecturers who will teach them. Lecturers will be faced with some students who 
have not been taught the meaning of the limit definition of the derivative, some who have been taught 
it but don’t remember or have poor algebra skills, and other students who do understand and have 
good algebra skills. Given this, how should a lecturer approach teaching introductory calculus? 
Options could include assuming that students have learnt and understood the intended curriculum, 
assuming that students do not understand the intended curriculum, or something in-between. Students 
are subsequently affected by the lecturer’s choice.   

Conclusion 
Teachers and lecturers would ideally have similar perspectives regarding students’ abilities to solve 
particular mathematics questions. This would allow students to undertake a more seamless transition 
in their studies from secondary to tertiary mathematics. This study, however, has shown that the 
perspectives are different, both within each group and across groups. There are differences at the 
school level between the intended calculus curriculum and the enacted calculus curriculum, with 
subsequent implications for tertiary mathematics and how it is taught. Lecturers have also shown 
limited knowledge of student understanding and teaching approaches in schools. More discussion 
within and across teacher and lecturer groups is needed in order to assist students in their calculus 
journey. 
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The dual nature of reasoning in Calculus 
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This paper is divided in three parts. The first part is devoted to the cognitive difficulties which are 
related to the dual nature of reasoning in Calculus as described in the early researches. In the second 
part, I analyze how more recent researches use the dual nature of the reasoning in Calculus to 
overcome some of the cognitive difficulties. I use the term “duality” in relation to abstract notions 
which can be conceived in two different and sometimes contrasted ways. These contrasted aspects 
are complementary and approaches which are based on an interplay between the two contrasted 
aspects might help overcome the cognitive difficulties that accompany central notions in Calculus. 
The third part relates to my present research on analogical reasoning in Calculus. An approach which 
used a specific abstract/concrete interplay is introduced and analyzed. 

Cognitive difficulties related to the dual nature of reasoning in Calculus 
The lenses offered by the process-object duality highlight students’ dynamic process view in relation 
to concepts such as limit and infinite sums, and help researchers to understand the cognitive 
difficulties that accompany the learning of the limit concept. Another duality, finite-infinite processes, 
characterizes central notions in Calculus. The potential infinity/actual infinity duality, is discussed in 
Fischbein, Tirosh & Hess (1979). These dualities, as seen in the early researches, enable the 
epistemological analysis of the content under consideration as well as the realization of the ensuing 
cognitive challenges inherent to the epistemological nature of the central notions in Calculus. 
Focusing on cognition, we consider the dual nature of the interaction between intuition and formal 
reasoning, in the terms concept definition and concept image (Tall & Vinner,1981).  

The school- university transition  

This dual nature of the reasoning in learning Calculus appears in the different stages of students’ 
education. The dual nature of the interaction between formal and intuitive reasoning represents one 
source of difficulties in the school-university transition: The main source of difficulty in the school-
university transition resides in the fact that many students' intuitive ideas are in conflict with the 
formal definition of the calculus concepts such as the notion of limit. On the one hand, the definition 
of the concept of limit is a particularly difficult notion, typical of the kind of thought required in 
advanced mathematics. On the other hand, in most countries today, at high school level, there is an 
effort to develop a first approach to calculus concepts without relying on formal definitions. 
Reconstructions from a more familiar, intuitive view to a formal approach have been proved to play 
a crucial role in calculus, especially at school-university transition (Artigue, 2001). The duality 
process/object might represent another source of difficulties in the school-university transition in 
relation to the concept of function. In differential equations, students have often to refer to function 
as an object, as a variable which will be calculated while solving the differential equation. At the 
school-university transition, the challenge is to deal with concepts which have the dual role of being 
familiar (intuitively) to the students and also provide the basis for later mathematical development 
(Tall, 1992).  
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More recent researches on Calculus that use the dual nature of the reasoning to 
overcome some of the cognitive difficulties 
In Kidron (2008) I present an approach based on the discrete/ continuous interplay. The  aim of the 
study is to analyze the effect of this interplay on the students’ understanding of the need for the formal 
definition of the derivative as a limit. Previous procept related researches influenced the specific 
discrete continuous interplay that motivated the design of the learning experiment. The previous 
researches demonstrated that the students viewed the limit concept as a potential infinite process. 
They also demonstrated students’ belief that any property common to all terms of a sequence also 
holds for the limit. The derivative might be viewed as a potentially infinite process of (f(x+h)-f(x))/h 
approaching f ′(x) for decreasing h. As a result of the belief that any property common to all terms of 
a sequence also holds for the limit, the limit might be viewed as an element of the potentially infinite 
process. In other words, lim Δy/Δx for Δx ->0 might be conceived as Δy/Δx for a small Δx. A 
counterexample is presented that demonstrates that one cannot replace the limit, “lim Δy/Δx for Δx -
>0” by Δy/Δx for Δx very small and the limit could not be viewed as an element of the potentially 
infinite process.  

In the following counterexample (the logistic equation), the analytical solution obtained by means 
of continuous calculus is totally different from the numerical solution obtained by means of 
discrete numerical methods. The essential point is that using the analytical solution, the students 
use the concept of the derivative as a limit “lim Δy/Δx for Δx ->0”  but, using the discrete 
approximation by means of the numerical method, the students omit the limit and use Δy/Δx for 
small Δx. (Kidron,  2008, p.202) 

Durand-Guerrier (2016) presents a didactical situation aimed at fostering the understanding of the 
relationships between discreteness, density-in-itself and continuity for an ordered set of numbers  at 
the undergraduate level. The research aimed at facing the didactical challenge of making students 
aware that an ordered set being dense-in itself does not mean that this set is continuous. Kidron and 
Tall (2015) use the same dualities (potential infinite/ actual infinite, process/object) that were 
mentioned in relation to cognitive difficulties, in a didactical situation that will facilitate the transition 
to the formal definition of the limit of sequences of functions. The students were introduced to two 
approaches to approximate functions by Taylor polynomials. One approach involved the students 
following Euler’s text, aided by the Mathematica package in order to do the “continued division 
procedure” to calculate 1/(1−x) as described by Euler’s “development of functions in infinite series”. 
The second approach used the notion of order of contact and a dynamic graphical approach, drawing 
with Mathematica successive Taylor polynomial approximations of degree n to see that, as the error 
term becomes small as n increases, the graph of the successive polynomials soon looks virtually the 
same as the graph of f(x). A potential infinite process of getting closer to the function is presented in 
this second approach in contrast of the actual infinite sum as an object which is presented in Euler’s 
approach.  Kidron and Tall (2015) analyze the students’ evolution of ideas from a potentially infinite 
process to the limit as an object, in terms of Euler’s symbolic view of a power series as an “infinite 
polynomial”, and the visual convergence of the finite polynomial approximations to the function 
itself. The study demonstrates how the dynamic blending of visual and symbolic representations 
might lead to the formal definition of the concept of limit.  



 

 

 117 

The abstract / concrete interplay in reasoning in Calculus by means of analogy 
The main focus of my present research in reasoning in Calculus by means of analogy, is a micro-
analytic study of the cognitive process involved in students’ expansion of existing knowledge and 
construction of new mathematical knowledge by means of analogy. Reasoning by analogy includes 
intuitive mechanisms of thought that accompany students’ processes of conceptual thinking. 
Therefore, the analysis is designed to elucidate the intricate relationships between intuitive 
mechanisms of thought, different types of analogy, the processes of reasoning by analogy and the 
emergence of new (to the learner) knowledge constructs. 

Geometrical analogy 

The joint effect of abstract and concrete aspects makes possible the evocation of a previous situation 
and the emergence of the geometrical analogy (Hofstadter and Sander, 2013). This joint effect is 
demonstrated in Kidron (2018). Students, who did express their awareness of the existence of 
irrational numbers, expressed their belief that there are only rational numbers on the number line. 
Only those students who were able to recall how to obtain the square root of 2 on the number line and 
point concretely where this point is on the number line, were able to overcome their belief that the 
length of a segment should be expressed only by means of rational numbers. It is the geometric 
analogy that gives body to entities such as the irrational number  whose existence on the number 
line seems counter-intuitive. The existence of abstract mathematical object such as  , is 
legitimated by such geometric analogy by giving concreteness to the abstract object.  

Another example is investigated in my present research in an activity in Calculus for first year 
students. Students might hold some naïve analogy such as the following one: “tending to the limit 
zero means steadily decreasing to zero in a monotonic way”. The awareness of the limitations of the 
naïve analogies leads to the need to expand previous knowledge. In this example, the dynamic 
graphical approach is used to hand the limit concept explicitly. What is specific to this approach is 
that the dynamic graphical feedback includes an unexpected little jump back in a 3D animation that 
demonstrates how an expression (in this case the upper estimate of the error in the remainder of 
Lagrange Rn) that approaches zero does not necessarily “steadily” decreases for every n in a 
monotonic way. The dynamic visual perception of the unexpected little jump back, creates a 
conceptual embodiment that enables a conceptual jump towards the definition of the limit notion. 

A specific interplay concrete/abstract in different situations with the same essence 

The activity is centered on the use of the notion of one-to-one correspondence. This specific case of 
abstract/concrete interplay is used to enable the construction of a counter intuitive mathematical idea: 
The construction of the concept of equivalence of infinite sets that includes the idea that two infinite 
sets A and B for which A is included in B might be equivalent. Different pairs of infinite sets are 
proposed and the students reason by means of analogy with previous cases. In some cases, students 
were able to construct the one-to-one correspondence between the two infinite sets and use formally 
the definition of the equivalence of infinite sets but to be able to accommodate this definition requests 
another type of construction process: the construction of the link between the concrete existence of 
the one to one correspondence between the two sets (which we are able to point on it and observe 
directly) and the more abstract aspect of the equivalence of two infinite sets. The link is from concrete, 

2
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directly observable aspects of the one-to-one correspondence to the more hidden, abstract ones of the 
equivalence of the two infinite sets.  Building the process which enables to use the formal definition 
may occur in a specific situation. To construct the definition requests, in addition, to find the same 
abstract essence in several different situations. This might be done with analogical reasoning. We are 
therefore not dealing with a transition from concrete to abstract. We deal with a specific 
concrete/abstract interplay that reappears in different situations with different “surfaces” but with the 
same abstract “essence” (surfaces and essence as used by Sander).  
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Background 
The notion of steepness crops up in a variety of situations within and outside of mathematics 
classrooms. It is familiar as an experience that humans encounter everyday and discuss casually, yet 
it can also be quantified as gradients and visualized as tangent lines. In this way, steepness belongs 
to what Sfard (2008) calls the “interface between mathematical discourse and ‘real-life’ talk” (p. 226). 
As mathematics education calls to build on students’ real-life experiences, we consider steepness to 
be worthy of disciplined inquiry due to the opportunities that it brings for learning by encouraging 
conflicts between colloquial and mathematical discourses.  

Here, we share a taster of research findings and teaching implications from our analysis of data that 
were collected from a larger project on undergraduates’ understanding of calculus (Yoon, Dreyfus, 
& Thomas, 2010). Our question was, “How can colloquial discourses on steepness inform the 
development of calculus discourses of undergraduate students?” 

Students’ approaches to steepness have been relatively under-researched in mathematics education, 
especially compared to the vast body of knowledge on their understanding of the related notion of 
slope (e.g. Moore-Russo, Conner, & Rugg, 2011). Research on steepness has tended to focus on 
precalculus contexts, such as linear graphs and real-life objects with a fixed steepness (e.g., ski ramps 
in Stump, 2001). We consider steepness to be a promising venue for exploring “big ideas” in the 
teaching and learning of calculus, specifically, as it links with such fundamental concepts as rates of 
change and slopes. 

Commognitive framework 
Our study is grounded in the commognitive framework (Sfard, 2008), which usage in undergraduate 
mathematics education research has been on the rise (Nardi, Ryve, Stadler, & Viirman, 2014). The 
framework regards mathematical discourses to be distinguishable through characteristic words (e.g., 
“steepness”, “gradient”) and their use; visual mediators (e.g., graphs, symbols) and their use; routines 
(e.g., calculating a gradient, constructing a tangent line); and narratives which are defined as “any 
sequence of utterances framed as a description of objects, of relations between objects, or of processes 
with or by objects, that is subject to endorsement	or rejection” (p. 134, italics in the original). 

Learning, from the commognitive standpoint, is conceived as a lasting change in learners’ discourse 
in at least one of the four characteristics named above. Such a change might occur as a result of 
resolving discursive conflicts – situations where two narratives seem conflicting, in the sense that an 
endorsement of one entails a rejection of the other. The conflicting narratives cannot coexist in the 
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same discourse or in isomorphic discourses, those in which “whatever is said in one of them, has its 
clear counterpart in the other” (Sfard, 2008, p. 122). On the other hand, when the narratives emerge 
in discourses that differ (e.g., in their rules of substantiation), the narratives are mutually independent, 
and there is no imperative to endorse one at the expense of the other. Sfard terms the discourses giving 
rise to such seemingly conflicting narratives as incommensurable. 

Sfard posits that some discursive conflicts are impossible for newcomers to resolve without help from 
the discourse’s “oldtimers”. She proposes that communication between newcomers and oldtimers can 
be enhanced by a shared learning-teaching agreement – a set of understandings regarding whose 
discourse is the leading one, how the teaching and learning roles are divided, and what is the nature 
of the expected discursive change.  

The study 
The data corpus of the larger project in which our study is situated consists of video-recordings, field 
notes, and material artefacts that sixteen participating students created in semi-clinical sessions while 
working in pairs on contextualized calculus tasks. Students worked in the presence of a member of a 
research team, whose interaction was planned to be limited to answering clarifying questions and 
encouraging students to record their responses in writing, while refraining from providing 
mathematical aid. The plan was difficult to execute fully and consistently throughout the sessions, 
and the researchers found themselves shifting between non-intervening observations and overt 
guiding. We account for these shifts in our analysis. 

The participating students were enrolled in an introductory first year calculus course at a large New 
Zealand university. Their enrollment indicated that the students had not studied calculus at secondary 
school or had not achieved highly in it. The data were collected after the topics of functions, limits, 
differentiation, and integration were covered in the course. The task that gave rise to the data we 
examine here began with a warmup, which presented students with a bell-shaped distance height 
graph of a tramping track (see Figure 1a) and a set of steepness-related questions. 

We analyze an abbreviated exchange between two students, Adi and Lia, and the researcher Tony 
(pseudonyms). The exchange unfolded around the questions “Where is the track steepest uphill? How 
can you tell?” We chose this exchange due to the richness of the discursive conflicts that took place. 

 
Figure 1(a) Distance height graph of track presented to students.  

Figure 1(b) Annotations that the students and researcher made on the graph. 

 



 

 

 121 

Findings 
From the beginning of the exchange, Adi and Lia focused on the upper portion of the uphill part of 
the graph (between x = 300m and x = 500m). Their sketches and gestures suggest that they interpreted 
the word, “where” in the first question to mean a “section” or “part of the graph” rather than a point 
on it. When using the words “point” and “here”, the students circled sections of the graph and traced 
them with a pencil. Lia sketched a series of three tangents before, directly over, and after the turning 
point (see tangent lines in Figure 1b) and said, “Because the gradient is getting negative … at some 
point it’s getting flat and then after that it is starting to get negative”. Tony asked Lia, “Where do you 
find in the uphill part, where do you find the steepest point, how would you look at this?” Adi 
responded by agreeing with Lia, “Yeah, I know what you’re saying”, retracing the sketched tangents 
in the air, and commenced the sentence, “It would be when…”. “Just before it’s flat”, completed Lia. 
Adi repeated the complete sentence as a sign of endorsement. 

This episode is notable from two perspectives. First, it captures the birth of a narrative we were 
unfamiliar with from either educational research literature, nor from our experience of teaching 
calculus: that an uphill graph is the steepest “just before it’s flat”. We find this narrative peculiar not 
just because of its mathematical validity steepness-wise, but also because of the students’ usage of 
“just before” in a calculus discourse: what is “just before” a point on a continuous graph? Second, the 
episode is illustrative of a learning-teaching agreement that had been established in the first part of 
the session: Adi and Lia led the discourse, while Tony mostly sought clarifications on what was said 
and written. This agreement changed afterwards. 

Tony repeated the peculiar narrative with a questioning intonation and continued, “If you walk up 
this hill [points at the graph], where would it be the hardest?” Commognitively speaking, this 
reformulation of the original question may be viewed as giving rise to a new discourse. Indeed, while 
the original question was concerned with the mathematical object of “the steepest point” on the 
distance height graph of a track, the new discourse uses a process-oriented and personalized 
evaluation “would be the hardest” while inviting Adi and Lia to “walk up this hill”. A further 
discursive shift occurred when Tony took a ruler, and sequentially laid it on the page as if tangent 
lines at three points on the uphill part asking, “And that will be harder than say a bit before [the 
turning point] when you were here [places ruler at point A in Figure 1b] or here [point B] or here 
[point C]?” 

We interpret Tony’s move as aiming to establish an isomorphic discourse to the students’, with the 
hope that Lia and Adi would attend to the conflict between the peculiar narrative that they constructed 
and their lived experiences. Since New Zealand students are well versed in walking uphill, there was 
good reason to assume that they would reject the narrative by themselves. This hope was fulfilled 
only partially. Lia eventually acknowledged that somewhere around the point B it “is hardest […] 
because you’re walking like really up […] and [“just before it’s flat”] you’re not walking up so much 
up”. Yet she added that this was only hardest “practically”, whereas “mathematically [the hardest 
part] will be just before you get to [the gradient of] zero”. With this sentence, Lia positioned the two 
discourses—practical and mathematical—as being incommensurable to one another. As “two 
narratives that originate in incommensurable discourses cannot automatically count as mutually 
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exclusive even if they sound contradictory” (Sfard, 2008, p. 258), Lia’s labeling the discourses with 
these different names disarmed the conflict that Tony had designed.  

To complete the story of this exchange, Lia and Adi eventually rejected their peculiar narrative and 
wrote that the track is the steepest “from about 240m into the track to about 400m” adhering to an 
interval where the steepest point is included. This development occurred as a result of a coalescence 
of the “practical” and “mathematical” discourses, in which the students generated hybrid narratives 
and reapplied the ruler-mediated routine that Tony showed. 

Implications for teaching 
To some extent, our study can be seen as a warning about the blanket approach of incorporating 
students’ real-life experiences into calculus teaching as a way of promoting students’ learning. The 
exchange we presented shows that the common pedagogical move of appealing to a discourse in 
which the students are better versed, does not always help them to progress in canonical mathematics. 
Even with pedagogical intervention, students can juggle discourses at their reach to substantiate the 
narratives that they created. 

The exchange we presented demonstrates that students’ real-life discourses do not map neatly onto a 
parallel target mathematical discourse. Rather, mathematical terms like steepness (and limits, among 
others) belong to both discourses, each with their own accepted narratives. Thus, care needs to be 
taken when invoking a real-world discourse as, eventually, students are the ones to decide how this 
discourse connects to their classroom mathematics, if at all.  
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Introduction 
The goal of this project is an educational design to support knowledge construction, with special 
emphasis on known common errors (Tsamir & Ovodenko, 2013). For this purpose, we developed and 
designed a teaching unit that is based on a digital interactive environment. The educational goal of 
the unit is to construct knowledge about the concept of the inflection point in a way that will prevent 
common errors or will offer (to learners) tools to cope with errors if they occur. Thus, in the 
conference we intend to report in detail about two complementary and interlacing issues: educational 
design towards certain knowledge construction and the analysis of the implementation of this design. 

Background 
The Center for Educational Technology (Israel) developed a digital teaching unit for learning and 
teaching the inflection point (Challenge 5, 2016). Two theoretical perspectives were interwoven to 
inform design: technological and cognitive. Based on the technological perspective (Naftaliev & 
Yerushalmy, 2011), the unit starts with the use of illustrating diagrams, continues with elaborating 
diagrams, and concludes and consolidates using narrating diagrams. This order allows us to lead the 
student from guided observation through meaningful elaboration towards a quite sophisticated 
concluding inquiry (ibid.). Based on the cognitive perspective, we start with the creation of the 
concept image that is (in our opinion) intuitively acceptable to students and is close to the formal 
mathematical definition of the concept. We continue, correcting misleading intuitions and gradually 
adding formal mathematical tools in order to achieve (as much as we can) the formal definition of the 
concept and its properties, as well as develop the skills necessary to distinguish between examples 
and counter-examples. 

The unit includes geogebra labs, interactive digital questionnaires, and videos, as well as a variety of 
investigative assignments that are based on them. The proposed teaching unit is constituted of a series 
of interactive activities designed in an accessible digital environment that enables the creation of 
different instructional or learning processes according to the needs of the teacher and/or the abilities 
of the learner. The unit is intended for all students studying differential and integral calculus in high 
school or in their first years of undergraduate education. The unit consists of five pages (five scrolling 
screens), each of which includes several digital tasks (“questions,” in the terms of the unit interface). 
Most of these tasks are interactive (with options to check answers and receive feedback). We 
hypothesized that learning with this unit would allow students to confront errors and to construct (and 
re-construct) and consolidate knowledge about the inflection point. 
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With the purpose of testing this conjecture, we conducted a short feasibility study with a pair of first-
year students (Gal (G) and Shani (S)) from the Industrial Engineering College (Israel). These students 
are considered advanced students (based on high formal achievements and their lecturer’s personal 
opinion). It was suggested to the students that they learn the unit after they learned the concept of the 
inflection point during the Calculus 1 course. The students’ main previous experience with the 
inflection point was during the investigation of functions based on the technical-algorithmic usage of 
well-known relevant theorems. The study was organized as a two-hour clinical interview in laboratory 
conditions. The students’ work was documented and transcribed for the purpose of analyzing their 
learning process. This analysis was conducted using “Abstraction in Context” (AiC) as developed by 
Hershkowitz, Schwarz, and Dreyfus (2001) as a theoretical framework and, in particular, as a 
methodological tool using the RBC (recognizing-building with-constructing) model. In the next 
section we discuss the final episode of our work with the students and offer a brief analysis. 

The episode: Judging wrong statements and inventing counter-examples  
This episode is based on the last activity of the unit, which deals with the process of the construction 
of the inflection point concept. At this point we expect that all the intended elements (identified from 
our a priori analysis) of relevant knowledge (e.g., monotonicity, tangent, derivative, convexity, etc.) 
have been constructed. At this stage there is an opportunity to consolidate the concept with an 
investigation task that presents typical errors regarding the concept of the inflection point as a 
collection of statements. Students are asked to determine whether a statement is true or false and, in 
the case of an error, to present a counter-example in the interactive narrating diagram. In this episode, 
to represent a constructing process (using the RBC model) we refer to the statement: [f: R ® R is a 
twice differentiable function. If the function is monotonic increasing in the neighborhood of x0 and 
f"(x0) = 0, then (x0, f(x0)) is an inflection point].  

The students started with the interpretation of the given information in the statement and tried to 
connect their conclusions to the existence of an inflection point. The students realized quite quickly 
that the statement is incorrect and understood that they need the counter-example to refute the 
statement. But it was not easy. The first example was the (improper) counter-example .  

The following episode is evidence of: (1) making a connection between the constructs; (2) making a 
correct judgment of the statement and the need for a counter-example; (3) recognizing (with digital 
help) that f(x) is not a counter-example.  

S: OK, let’s break this down: If in the neighborhood of x0 the function is monotonic increasing, 
in this neighborhood f'(x)>0 always. Does it follow that from f'(x)>0, f"(x0) = 0 there is an 
inflection point?  

G: Correct. Do we need to give an example? [G. is drawing the function on the 
diagram] Aaaah, this is right! [...] Maybe we need a different example? 

S: I think that this example meets all the conditions of the statement [reads each condition and 
confirms that the function fulfills it] and the point is an inflection point. We need to find a 
counter-example [repeats the conditions of the statement again]. 
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In this discussion we can see some signs that fit with recognizing some elements from the students’ 
previous knowledge (e.g., the connection between the function and its derivative, the role of the first 
derivative, etc.), but still there is no connection to the task context. There seems to be a circular 
discussion around . We can’t see any evidence for building-with. It seems that finding the 
counter-example to this specific statement is too difficult for the students. However, an explicit 
prompt by the researcher “to go back” from the second derivative to the function brings immediate 
results. The following episode is evidence of the transition from building-with (B) to construction 
(C). 

(B) S: OK, f"(x) = x2. Let’s go back!? But then f(x) will be not monotonically increasing. It will  
be x4? [Thinks and observes the situation with the diagram] [...] But we can force the 
[first] derivative to be always positive. The function 3x2 is non-negative [second derivative] 
and if we take C>0 [first derivative] then the function will be monotonically increasing for 
every x.   

(R) G: Why do you take C>0?  

(C) S: Because when we get a positive derivative we get a monotonically increasing function.  
This is the counter-example!    

(B) G: [Calculates the integrals] … and then the next integral is  .  

(C) S: Leave the division by 12. Take one step back. There is . Now if we will succeed … 
Look, in our first example we took a function that has an inflection point (0, 0).  

(B) G: Aaaah, plus something! 

(C) S: That’s it! Let C=2, then we get f'(x)>0 [in the 
neighborhood of x=0] and then f(x) is 
monotonically increasing. But x=0 is not an 
inflection point. [G. checks the function on the 
diagram – Figure 1] 

 

It’s seems that while working, S and G constructed the concept of the inflection point, but apparently 
the construction is a fragile one. The clarification question of the researcher to G—“Can this function 
have an inflection point at x=0?”—evoked doubt and put her back to the beginning of the unit. The 
following episode is evidence of this.  

Researcher: [to G] where is the suspicious point that isn’t an inflection point?  

Fig. 1 
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(C) G: Here [pointing to zero – Figure 2]  

Researcher: Why it is here? 

(C) G: Because here it’s changing. 

Researcher:  Is an inflection point here possible? 

G: Yes. 

(C) S: Why? Look, the tangent line is below the graph always …
  

G: Why? If I drag the tangent line, now it is above the graph! [Zooms in and observes] Aaaa, 
I see … right! The statement is incorrect and we have found the counter-example! 

It seems that G has only partially constructed the notion of the inflection point. Despite the fact that 
in the process of the dialogue she carried out all the algebraic operations associated with the concept, 
it is possible that the visual representation caused some confusion. Taking this into account, we plan 
to enhance the design of the diagram with the aim of supporting the constructing process of the 
concept.  

Concluding remarks  
The analysis of students’ learning process (according to the AiC framework) allowed us to gather 
empirical evidence regarding construction, re-construction, and consolidation of knowledge about the 
inflection point. Our findings show that students (partially) constructed intended elements of 
knowledge, (partially) re-constructed existing elements, and in some cases used constructed elements 
as initial elements for new construction. As a by-product of the analysis we also identified some of 
the disadvantages of the design. We are hoping to report and discuss the matter in a more detailed 
presentation at the conference. 
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Evidence from the National Study of Calculus in the United States indicates that student engagement 
in calculus classes is low (Bressoud, Mesa, & Rasmussen, 2015). Observations of calculus lessons 
conducted in 18 different institutions revealed that, for the most part, the instructors present problems 
that emphasize competencies with calculus procedures (e.g., derivative rules), using symbolic 
representations only, and with little contextualization, visualization, or student participation (Mesa & 
White, 2017). While there is variation in terms of how these aspects of calculus instruction are 
enacted, in the end, most of the students observed did not seem to experience a conceptual approach 
to calculus, did not engage deeply with calculus ideas, and did not use multiple representations to 
solve problems in contextualized settings. Curriculum materials—textbooks in particular—have been 
seen as necessary, but not sufficient to promote different ways to teach calculus. In the U.S., the 
calculus reform movement in the 1990s sought to overhaul the teaching of calculus by emphasizing 
conceptual understanding of ideas such as rate of change and accumulation; the growing availability 
of graphing technology and an interest in making calculus “lively” generated instructional materials, 
textbooks and software that were meant to be used in classrooms to support students’ understanding 
of calculus. The introduction of new materials came with a push for new ways of engaging students 
in the classrooms (e.g., group work and classroom presentations, project-based learning, and more 
complex assessments) and institutional reorganization (e.g., longer class meetings, smaller class size, 
furniture to facilitate group work). Nearly 30 years later, it seems that several of these ideas have 
percolated into some textbooks, and while technology is even more available, instruction did not keep 
up. Calculus instruction is still a roadblock for student advancement in mathematics (Rasmussen & 
Ellis, 2013). Evidence from other studies, mainly in K-12 education, indicates that curricula alone 
cannot promote instructional change. However, the evidence is strong that, in the absence of 
appropriate materials, it is less likely that instructors will have an incentive to change their practice. 
As part of a large, federally-funded project we investigate how textbooks can be designed to support 
changes in instruction—specifically changes in how instructors and students interact with the content. 
The textbooks have built-in features that seek to motivate and require students and instructors to 
interact with ideas in ways that promote student learning.  

Theoretical background 
Rezat’s didactical tetrahedron (Rezat & Strässer, 2012) helps in understanding the pivotal role of 
resource use in teaching (Figure 1). In the base of the tetrahedron are elements of the instructional 
triangle, a definition of instruction as the interaction among the instructor, the students, and the 
content. 
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In this model, resources are an interdependent element that 
modifies such interaction. In addition, the model allows 
researchers to attend simultaneously to students’ use of the 
resources to learn mathematics (Students-Mathematics-
Resources) and to the interdependent way in which instructors and 
students interact with the resources. Although initial 
conceptualizations of use have been proposed about textbook 
readers, ours is a purposeful attempt to investigate use of 
textbooks for teaching and learning in real time. The second strand of work that informs this study is 
the instrumentational approach to resource use by instructors. Rabardel and colleagues have proposed 
that human instruments have a dual character: “they contain components from artefacts themselves, 
and components from users’ utilization schemes” (Rabardel & Waern, 2003, p. 643). In this 
conceptualization, users interact with their resources in ways that are not anticipated by the designers. 
We seek to understand the schemes of use (operational invariants) associated with planning lessons 
and assigning homework.   

Context and method 
The data for the study presented here are drawn from a larger study that seeks to investigate how 
students and instructors use open-source dynamic textbooks in calculus, linear algebra, and abstract 
algebra courses. Active Calculus (Boelkins, 2018, pp., https://books.aimath.org/ac/) is an open source, 
dynamic textbook written using PreTeXt, an authoring markup language designed specifically by our 
development team to produce interactive online textbooks. PreTeXt captures the structure of 
textbooks to ease conversion to multiple other formats (https://pretextbook.org/). In addition to 
interactive Java and Geogebra applets, the textbook embeds WeBWorK exercises and author 
designed Reading Questions. WeBWorK is an open source, homework problem system with a 
massive open-source database of free exercises; when students complete the problems online, the 
system provides them instant feedback. Instructors can use such problems, independent of the 
textbook, to complement to their courses (see http://webwork.maa.org/). Active Calculus includes a 
subset of anonymous WeBWorK exercises that target skill development. At the end of each section, 
students encounter a set of questions prompting them to type their responses directly into the 
textbook. The aggregated responses are sent to the instructor in real time; those can be used to gauge 

Figure 8: Didactical tetrahedron 

Figure 9: WeBWorK and Reading questions in Active Calculus. 
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the extent to which students are understanding the material. Figure 2 presents one of six WeBWorK 
problems and the reading questions for the section on the “Total Change Theorem” (If f is a 

continuously differentiable function on [a,b] with derivative f′, then f(b)−f(a)=∫ab
 f′(x)dx. That is, the 

definite integral of the rate of change of a function on [a,b] is the total change of the function itself 
on [a,b]).  

The textbooks are distributed free of charge to the students, 
which reduces the cost of attending college; changes (e.g., 
typos, ordering, adding or removing sections or examples) can 
be made in real time; and because they are written in PreTeXt, 
it is possible to track how users interact with the textbook 
(Figure 3). This study involves authors, software developers, 
instructors, and researchers, in a continuous cycle of data 
collection, analysis, design, and implementation that supports 
the development and improvement of the textbooks 
and of the methods of data collection, providing a rich 
data set to use in understanding how instructors and 
students use the textbooks in the class. The study uses 
a mixed-methods embedded design, and collects data 
from the instructors, their students, and their lessons. 
Figure 4 shows the various types of data that are being 
collected over a one-semester period. Students and 
instructors respond to periodic surveys about textbook 
use (logs) that contain questions regarding their uses 
of the textbooks and their viewing patterns. Our pilot 
work has demonstrated that this strategy allows for users to reflect on what they do and why. 

Our study works with 49 different sections, 17 of which use the calculus textbooks. These sections 
include 14 calculus instructors and their students (~280) over seven semesters of data collection. Data 
analysis involves both quantitative and qualitative techniques. Responses to logs and reading 
questions are analyzed on an ongoing basis, using topic modeling techniques (Blei, Ng, & Jordan, 
2003) that identify major themes across a large corpus of data. These results are triangulated with 
student survey and real-time viewing data, which produce computer generated summaries of 
proportional viewing time by course, topic, and textbook element (WeBWorK problems, reading 
questions). Viewing data are mapped onto course syllabi. Log questions inquire also about the 
development of course documents (e.g., syllabus, lesson plans, assessments). For a subset of 
instructors, we perform site visits that include observation and video recording of lesson planning and 
enactment and discussion of video clips to obtain information about rules of actions with the 
documents, about decision making informing changes from plans to enactment, and corroboration of 
uses with students in focus groups.  

 

 

Figure X (data sources)  

Figure Y (heat map, usage data) 

Our study works with 49 different sections, 17 of which use the calculus textbooks. These sections 
include 14 calculus instructors and their students (~280) over seven semesters of data collection. Data 
analysis involves both quantitative and qualitative techniques. Responses to logs and reading 
questions are analyzed on an ongoing basis, using topic modeling techniques (REF Blei, Ng, & 
Jordan, 2003) that identify major themes across large corpus of data (anticipated 60 responses per 
log, five to six logs per term). These results are triangulated with student survey data and with real-
time viewing data, which produce computer generated summaries of proportional viewing time by 
course, topic, and textbook element (WeBWorK problems, reading questions, sage cells). Viewing 
data are mapped onto course syllabi. Syllabi, lesson plans, and assessments are analyzed to pose 
questions regarding the development of those documents; these questions are posed in several of the 
logs. For a subset of three instructors, we perform site visits that include observation and video 
recording of lesson planning and enactment, discussion of snippets of video to obtain more detailed 
information about rules of actions with the documents and about decision making informing changes 
from plans to enactment, and corroboration of uses with students in focus groups.  

Anticipated results 
In our pilot study we documented instrumentation and instrumentalization processes in the context of 
linear algebra. In one case, an instructor indicated that linear dependence was revealed better via a 
“geometric interpretation in ℝ3 with more than two vectors [that were] linearly dependent”.  Because 
the textbook did not include visualizations, the instructor embedded code in his lecture notes, which 

 
Beginning of Term Week in the term End of Term 

  2 4 6 8 10 12 14  
Course documents X   X   X   
Teacher surveys X         
Teacher logs  X X X X X X   
Site visits for three instructors: 
Three teacher interviews 

I1: Planning 
I2: Enacting 
I3: Reflecting 

Class observations 
Student focus groups 

  ßXà  
 

  

 

Computer-generated data of 
teacher and student textbook use 

 

 
Student logs  X X X X X X   
Student survey     X     
Student tests X       X  
Student grades         X 

 

Deleted: which 

Commented [YL2]: just “and” ? 

Commented [MB3]: again, no Sage Cells in AC 

Commented [YL4]: erase that? 

Figure 11: Data collection plan 

Figure 10: Real time viewing data 
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Anticipated results 
In our pilot study we documented instrumentation and instrumentalization processes in the context of 
linear algebra. In one case, an instructor indicated that linear dependence was revealed better via a 
“geometric interpretation in ℝ3 with more than two vectors [that were] linearly dependent”. Because 
the textbook did not include visualizations, the instructor embedded code in his lecture notes, which 
he distributed to the students, thus allowing them to visualize their own linearly dependent sets in ℝ3. 
We anticipate that the readily available visualizations in the Active Calculus textbook will generate 
different instrumentation and instrumentalization processes through the Java and Geogebra applets. 
We also documented a progression from less to more dynamic uses of the instructor’s lecture notes 
and specific connections to the textbooks. Some instructors created lecture notes by hand, others 
created videos of themselves reading the textbooks and highlighted key points, others created 
electronic slides that they presented in classrooms, and still others created live interactive documents 
that were modified during class and became part of the students’ personal notes. With topic modeling, 
we identified distinct types of student engagement with the textbook (e.g., reverse engineering 
solutions, learning proofs) that differ by textbook used. We anticipate some novel engagements as 
we collect data with Active Calculus. 
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This is a position paper on the place of limits in calculus courses. The courses I have in mind are 
‘elementary calculus’ courses, at school or university, without e-d definitions. The argument in this 
paper do not apply to courses on analysis. For almost 200 years, limits have been at the heart of 
differential and integral calculus. Modern courses take heed of this and limits are usually considered 
as the starting point for calculus courses. For example, in the USA, the Advanced Placement (AP) 
calculus course1 lists its big ideas, in order2, as: limits; differentiation; integration and the fundamental 
theorem of calculus (FTC); series. I argue that, limits, as a big idea/topic/strand, should not have first 
place in this ordering. Ignoring series, as this is a short paper, I first make a case for placing 
differentiation before limits and then consider the place of integration. I look at the history of calculus 
and students’ difficulties with limits as a prelude to presenting my argument. 

The history of calculus and students’ problems with limits 
Leibniz and Newton independently invented it in the late 17th century. Leibniz’ approach used 
infinitesimals and Newton’s fluxions. Both approaches blossomed for many years but later became a 
source of discomfort to mathematicians. By the turn of the 19th century attention was given to limit 
approaches and, by the end of that century, a ‘rigorous’ formulation of the fundamental ideas of 
calculus was possible. At the educational level, calculus textbooks in the 19th century increasingly 
adopted Leibnitz’ notation (dy/dx, dy/dx) whilst textbooks in the 20th century increasingly adopted 
limit approaches that we see in the AP course. This is not to say, however, that a textbook/course that 
adopts a limit approach will necessarily provide a rigorous formulation of the calculus. It is worthy 
of note here to mention that Leibniz infinitesimal calculus was given a rigorous foundation through 
the invention of non-standard analysis (NSA) in 1966 and subsequent simplified forms of NSA.  

It is undoubtedly the case that calculus teachers have long known of students’ difficulties with limits 
but this knowledge was not in the public domain until the 1970s, initially through the writings of 
David Tall and Bernard Cornu; see, for example, Schwarzenberger & Tall (1978). Students’ problems 
with limits have many sources. Dynamic process vs static objects: 0.9, 0.99, ... will approach 1 but it 
will never get to 1 (this problem is exacerbated by the fact that mathematics is atemporal, we don’t 
consider ‘time to sum’ in evaluating ). Language: “I don't really see how numbers can 
converge” (Monaghan, 1993). Pre-calculus mathematics: decimal notation ‘teaches us’ that any 
number starting ‘0.’ is less than 1, so it makes sense that <1. Problems with limits continue beyond 
elementary calculus. For example, the now well documented ‘temporal order’ phenomena with e-d 
definitions, first noted by Davis & Vinner (1986), “for every e>0, there exists a d>0 …” is often 
internalised as “for every d>0, there exists a e>0 …”. Basically, limits are hard.  

                                                
1 https://secure-media.collegeboard.org/digitalServices/pdf/ap/ap-calculus-ab-and-bc-course-and-exam-description.pdf 
2 I use the word ‘order’ to mean the order of strands, e.g. limits, is introduced before another strand, e.g. differentiation 
but with the proviso that the I do not expect one strand to be exhaustively covered before instruction on another begins. 
Most ‘good’ instruction pays attention to a spiral curriculum. 
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Differentiation and integration without explicit limit arguments 
But ‘limits are hard’ is only one of the grounds of my argument. Another ground is twofold: pre-
calculus students have had very little exposure to limits; an introduction to differentiation gives plenty 
of opportunity for ‘limiting experiences’. I illustrate the last statement with a pretty standard 
introduction to the derivative at a point, which avoids explicit ‘limit as an object’, , but 

could/should talk about the limit of the ratio Dy/Dx, . The task is: 

What is the gradient to the curve  at the point (0.5, 0.25)? 

Figure 1 and the table to the right 
show how this could be approached. 
Dx 3 could be decremented by 0.1 and 
then by 0.01. The language of 
instruction could talk about the ‘limit 
of the secant’ and the ‘limit of the 
ratio Dy/Dx’. The polynomial 
provides a relatively straight-forward 
context for students to ‘get a feel’ for 
limits whilst working on the first 
steps to the derivative at a point. 

 
Figure 1            Graphical 
representation of the limit 

of the ratio Dy/Dx 

Dx Dy 
 

0.4 0.56 0.714 

0.3 0.39 0.769 

0.2 0.24 0.833 

0.1 0.11 0.909 

…   

0.02 0.0204 0.980 

0.01 0.0101 0.990 
 

If the work is supported by a digital tool such as GeoGebra, then it is relatively straight-forward to 
change the point at which we are finding the derivative. This affords plotting the derivative at a point 
against this point and getting a first experience of the derivative function. This allows the derivative 
at a point to be fairly quickly followed up by the derivative function – something that is difficult to 
enact in a ‘limit approach’ to differentiation. 

Traditionally, the next step is finding the derivative function symbolically. This can be done without 
explicitly using limits: 

 
As Dx ‘gets closer and closer to 0’4, the derivative ‘gets closer and closer to 2x’. This approach can 
be extended to other functions and, with the help of a computer algebra system, to any function. 

Without getting into the technical details of evaluating limits we can find: tangents and normals; 
higher derivatives; maximum/minimum points; points of inflexion; and increasing and decreasing 
functions. And, in covering these topics, the teacher has ample opportunity to engage her/his students 
in talking about limit ideas. A remarkable thing about this approach is how unremarkable it is; people 
do this and have been doing this for centuries. I now consider integration. 

                                                
3 Dx could be replaced by dx or dx or another letter. 
4 Another opportunity for talk about limiting processes without getting into the technicalities of evaluating limits. 
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Differentiation comes before integration in almost all calculus courses, but this need not be the case. 
40 years ago Henle and Kleinberg (1979) wrote a calculus textbook where integration was covered 
before differentiation (this was enabled by the non-standard analysis approach the book took). More 
recently, Bressoud (2019) provides an historical account of calculus where the first two chapters are: 
Accumulation; Ratios of change.  

In my experience, there are two common approaches to integration in elementary calculus: (i) an 
invocation of the FTC in the form ‘integration is the reverse of differentiation’5; (ii) a quasi Riemann-
sum approach6 which employs limits, e.g. . But there are other 

approaches: (iii) through upper and lower bounds of the area under a function between two points; 
(iv) through a focus on accumulation and rates of accumulation (see Thompson, 1994). Approach (iii) 
mirrors the early history of integration (see Bressoud, 2019) but ‘post rigour’ expositions of this 
approach, e.g. Spivak (1967), support the approach via limit notions inherent in the concepts of 
supremum and infimum: a function f is integrable on [a, b] if the supremum of the lower sums equals 
the infimum of the upper sums (for partitions of f on [a, b]). Nevertheless, it would be possible to 
develop a modified form of (iii) which does not explicitly refer to supremum and infimum. Whatever 
advantages and disadvantages this approach offers, it does allow integration to be presented before 
differentiation and theorems, simple ( ) and deep (If f is integrable on  and F 

is defined on  as , then F is continuous on ), can be developed. Approach (iv) 

will, undoubtedly, be presented during Pat Thompson’s plenary at the conference, so I bypass an 
exposition but make two comments: it does depend on the concept of rate of change; it is, like the 
approach to differentiation above, developed (by Thompson) without explicit limit concepts, e.g. “

 ... represents the average rate of change of volume over the interval 

” (ibid., p.264). 

Discussion 
I revisit the grounds for my ‘not limit first’ argument. I then consider what functions are suitable for 
elementary calculus without explicit limits. I end by considering the possible orderings of limits, 
differentiation, integration and the FTC. 

The grounds of my argument are: limits are hard for students; pre-calculus students have had very 
little exposure to limits; differentiation gives opportunity for ‘limiting experiences’. The norm of 
instruction in pre-calculus mathematics is to build on students’ prior experiences. Ideally, pre-
calculus mathematical activities should cater for limiting experiences but this is not, in my experience, 
the norm. I have pointed out areas where non-explicit limit ideas come into differentiation above but 
they can come into integration too, in approach (iv) and a modified approach (iii). This paper is a 

                                                
5 This approach is, in my opinion, simply bad mathematics. 
6 ‘Quasi’ because the width of strips are assumed to be constant and only one of lower/upper rectangles are used. 
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position paper. If this position was adopted, then we could be designing curricular activities that 
generate good conditions for students’ limit experiences prior to being explicitly introduced to limits. 

The functions I regard as suitable for such non-explicit limit calculus are those functions we can draw 
in a quick movement of the hand – not just continuous but where left derivatives at a point always 
equal right derivative at that point. These are the functions for which limits are not particularly 
problematic (other, of course, than 0/0). Not only that but it would be rather silly to consider the limits 
of these functions at a point as it is just the value of the function at that point. Students must, of course, 
see other types of functions but examining limits in these other functions ( , 

etc) should be delayed until students have had other limit experiences.  

I close by considering the order of limits, differentiation, integration and the FTC. I have argued that 
differentiation should come before limits are explicitly considered as mathematical objects. 
Integration could come before differentiation but this would require a non-standard analysis approach 
or a modified approach (iii) or an historical approach (Bressoud, 2019). I am not aware of curriculum 
development or research into starting with integration at the level of elementary calculus, so further 
consideration/experimentation would be required. I now move on to consider limits and the FTC. Is 
there a best ordering with these? I think the answer is straightforward, either can come before the 
other. In an AP-like approach limits will come before the FTC. But the work of Pat Thompson shows 
that the FTC can be taught and understood by students without an explicit consideration of limits7. 
Further to thisThompson (1994, p.167) contrasts his approach to a classical limits proof: 

The problem with the typical proof is not so much in the proof as that it is presented as modelling 
a static situation. It is presented in such a way that nothing is changing. If students are to understand 
F'(x) is a rate of change, then something must be changing 

So, instead of coming first in this calculus quartet, limits could come last. But if they come last, then 
do we need them at all? I end this position paper by suggesting that we can design and successfully 
teach elementary calculus courses without any explicit considerations of limits as objects. 
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7 Though this may only be practical with the use of mathematical software; which does not seem to be a problem in 2019. 
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Introduction and rationale 
This paper builds on a study aiming to investigate how calculus students, in their first year at 
university, reflect on the Fundamental Theorem of Calculus (from now on denoted as FTC). As a part 
of MatRIC’s (Center for Research, Innovation and Coordination of Mathematics Teaching) research 
activity, the study was carried out with engineering students from the University of Agder. As the 
university teacher of these students explicitly emphasized the importance of obtaining in-depth 
understanding of fundamental concepts and ideas of integration, a relevant object of the research is 
to investigate if this could be traced in students’ reflections. Recent research on students’ perceptions 
of integration has inspired this study (Thompson & Silverman, 2008; Bressoud, 2011; Ely, 2017; 
Wagner, 2018) and I draw on the findings from these in the discussions. For this paper, I pose the 
following research question: What characterizes first-year engineering students’ reflections on the 
Fundamental Theorem of Calculus? 

Theoretical framework and research methods 
From an institutional perspective “the relation of an individual to an object, o, of knowledge is 
strongly conditioned by the institution I” (Winsløw, 2013, p. 2478). The object, o, in this case 
corresponds to the FTC. Further, within the Anthropological Theory of Didactics, a “praxeology” 
serves as a unit from which one can analyse human action, composed by the parts “praxis” and 
“logos” (Chevallard, 2006). “Praxis” consists of a certain type of tasks and a set of “techniques” to 
solve them, while “logos” contains two levels of descriptions and justifications of the praxis. The first 
level is “technology” and concerns the discourse of the techniques. The second level is the “theory” 
which provides the basis for the technological discourse. In this paper “mathematical praxeology” 
refers to the content of the lectures while students’ “interpretation of praxeology” involves students’ 
meaning-making related to the mathematical praxeology they are a part of. Winsløw (2013) describes 
praxis as the “practical block” and logos as the “theory block” and since technology and theory 
sometimes is inconvenient to separate, I draw on these terms in the analysis. A mathematical 
praxeology normally involves both the practical block and the theory block. However, in some 
occasions, for example when conducting mathematical proofs, theory could play a major role also in 
practical block, and proofs then “shift from the logos to the praxis” (Winsløw, Barquero, De 
Vleeschouwer & Hardy, 2014, p. 101).  

To account for the mathematical praxeology related to the FTC, I observed two introductory lectures, 
each lasting for two hours. A video camera was used to record the lectures. The class consisted of 
mechatronic and computer engineering students divided into small “study groups”. Based on 
voluntariness and gender balance, four such groups were selected and 15 students in total, were 
interviewed. The interviews were semi-structured, each lasting for about 40 minutes. All the students 
were asked to describe, in their own words what an integral is, followed by the challenge of explaining 
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the content of the FTC, as display in their textbook. Follow-up questions were based on the students’ 
own statements. In the analysis, these two parts of the interview are treated holistically, aiming to 
account for the students’ interpretations of the associated mathematical praxeology.  

Mathematical praxeology of the lectures 
In this section, the mathematical praxeology through two introductory lectures is accounted for. In 
the first lecture, two types of tasks were dealt with and the first was “estimate the area between 𝑓(𝑥) =
𝑥G and the interval [0,10] by using 𝑛 participations”. The technique used to solve this was by applying 
the summation formula ∑ 𝑖G = 9(9y4)(G9y4)

}
9
\~4  for the expression 𝐴 = ∑ 4VVV

9�
∙ 𝑖G9

\~4 , for different 
values of 𝑛. The associated technology involves identifying the area of a random “bar” being 𝐴\ =

𝑏\ ∙ ℎ\ =
4V
9
∙ D4V

9
∙ 𝑖F

G
= 	4VVV

9�
∙ 𝑖G and hence the sum. Theory sustaining the technology was tacit in 

the lecture but involves justification of the summation formula and linearity rules for final sums.  The 
second type of task was to “find the area as 𝑛 goes to infinity”, within the same context as the previous 
type of task. The technique in this case was to evaluate the formula derived from the expressions in 
the previous type of task, namely = 4VVV

9�
∙ 9(9y4)(G9y4)

}
= 4VVV

9�
∙ G9

�y+9Hy9
}

= 4VVV∙G9�

}9�
+ 4VVV∙+9H

}9�
+

4VVV∙9
}9�

 . By evaluating each of these three last terms as → ∞ , one is left with 𝐴 = 4VVV
+

.  The associated 
technology is to identify the proper summation formula based on 𝐴\ as a “random bar” of the Riemann 
sums. In addition to the justification of the summation formula, definition and characteristics of 
“limit” as a mathematical term, tacitly constitutes the underlying theory. The second lecture and the 
third type of task exemplified, in line with Winsløw et al. (2014), how theory could “shift from the 
logos to the praxis”. The type of task was not explicitly stated in the beginning of the lecture, but 
tacitly permeates the content, and could be formulated as “define the definite Riemann integral”. 
Techniques in this case was to create upper and lower boundaries, constituted by sums of “bars” 
respectively exceeding and descending the graph. It was concluded that the area corresponded to a 
number “between the lower and upper boundary of sums of bars, for all possible partitions”, which 
again led to the definition of the Riemann integral in terms of lim

9→�
∑ 𝑓(𝑥\) ∙ ∆𝑥\ = ∫ 𝑓(𝑥)𝑑𝑥O

N
9
\~4 . This 

abstraction is rather complex and belongs to the theoretical block, involving both technology and 
theory: Technology in the sense that it explains the purpose of constructing the sums and theory as it 
also rests on the ideas of infinitesimals and limits. The fourth type of task, “prove the fundamental 
theorem of calculus”, was explicitly stated either, but as for the previous task, it formed the basis for 
the content. The technique was carried out by sketching a graph, 𝑓(𝑡), followed by marking the 
integrals 𝐹(𝑥) and 𝐹(𝑥 + ℎ) in terms of the corresponding areas.  By constructing the expression 
𝐹(𝑥 + ℎ) − 𝐹(𝑥) ≈ 𝑓(𝑥) ∙ ℎ, and by letting ℎ → 0, 𝐹5(𝑥) = 𝑓(𝑥) is achieved. The technology 
consisted of identifying the visual representation as the definition of the derivative, while the mean 
value theorem, and the concepts of limits and differentiation, tacitly constituted the theory.  

Analysis of students’ reflections 
Since it is impossible to provide nuanced analysis from the transcriptions within the limitation of this 
paper, the main findings are presented in a table (Table 1). Based on “area under a curve”, which was 
mentioned by all the students during the interview, two main categories of further reflections 
emerged. “Riemann sums” alludes to reflections about sums of rectangles (or “bars”). If the students 
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somehow reflected on the integral as the limit of such sums, they fulfilled the criteria of an associated 
mathematical justification, and were listed in the theory block. If they only demonstrated the 
awareness of such sums and how to calculate them, they are listed in the practical block. “Anti-
derivatives” includes students explaining that differentiation and integration are inverse operations, 
and that the anti-derivative could be used to calculate the integral. To be categorized in the theory 
block, the students had to provide a mathematical justification for why this is the case. The column 
“None” are students that only provided pragmatical answers like “I don’t know, I just do it”.  

 Area under a curve 
Number of 
students 

Riemann sums Anti-derivative 
None Practical block Theory block Practical block Theory block 

3     X 
2   X   
2 X  X   
3 X X    
4 X X X   
1 X X X X  

Table 1: Students’ distributions related to their interpretations of the mathematical praxeology  

The emphasis on Riemann sums in teaching might explain that eight students are associated with the 
theory block of “Riemann sums”. Still, most of these students hesitated when challenged to provide 
more detailed explanations. One student suggested that “this is only the sum of heights [heights of 
the bars] with no width” while another student expressed frustration, as he commented that “it stresses 
me that very small pieces are an estimate, but when one approaches zero it suddenly becomes 
accurate”. The statement “when you calculate integrals [in substitution] you treat these as fractions, 
but on the other hand these are not really fractions”, illustrates a third student’s concern related to the 
notation 𝑑𝑥 and its implications. This might relate to the university teacher’s lecture about 
substitution (not accounted for in this paper) and his response to a question on whether 𝑑𝑢/𝑑𝑥 is a 
fraction: “you can look at these [𝑑𝑢 𝑑𝑥⁄ ] like that. It works. But if you regard it from a theoretical 
perspective it is not quite the same”. Subsequent, “extension of the number line in terms of 
infinitesimals” were briefly mentioned as a rationale, but without any further elaborations.  

Concerning the anti-derivative, several students point out that integration and differentiation are 
inverse operations, but only one student was able to offer a mathematical justification for this 
correspondence: “I think that if you for example have f of x equals two, then that will be a horizontal 
line. And when you take the anti-derivative, then you get two x. So that is only two times the width”. 
By using 𝑓(𝑥) = 2 as an example, the student related the anti-derivative of this function to the area 
of a corresponding rectangle. Due to the formulation “two times the width” it is likely that the student 
links this to the “bars” in Riemann sums.    

Discussions and conclusion 
Compared to a more traditional cognitive approach, aiming towards the individual students’ 
conceptions, I find that ATD allows for institutional interpretations of students’ reasoning. By 
emphasizing the connection between students’ reasoning and the actual teaching they have been 
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exposed to and the types of tasks they have worked with, I also see more direct opportunities for 
improving teaching.  

Demonstrated through the mathematical praxeology of the lectures, limits and infinitesimals are not 
treated on a meta-level, in terms of being objects for discussions and reflections themselves. Hence, 
one can suspect such discussions to be dismissed and considered to be unimportant for these group 
of students. In turn, this might also explain some of the students’ reluctance and confusion related to 
the algebraic sense-making of notations, represented through the examples provided in the previous 
section. Ely (2017) points out that in most textbooks, 𝑑𝑥 and ∫ are still used, but without the meanings 
Leibniz assigned to these. Instead, praxeologies reformulate integrals in terms of limits. The notations 
in some sense then become vestiges and no longer directly represent quantities that students can 
manipulate. According to Ely (2017), this ambiguity is not easy to solve, unless one introduces 
hyperreal numbers to substantiate the algebraic sense-making of infinitesimals. Further, from the 
praxeology of the lectures, one observes that Riemann sums primarily serve the purpose of 
introducing integrals and the FTC. To some extent, this is mirrored in students’ reflections. In this 
sense, findings support Wagner’s (2018) claim that “too many students dismiss Riemann sums as an 
unpleasant stepping-stone to be endured in a curriculum whose goal was really to get to the FTC” (p. 
354). As pointed out by Thompson and Silverman (2008), Riemann sums bear the potential of playing 
a major role for the students’ perception of integrals as accumulation functions, which in turn could 
contribute to students’ understanding of the FTC. For the 15 students in this study, the neglection of 
integrals as an “accumulation function”, enforces the suspicion that the potential of Riemann sums is 
not sufficiently utilized in teaching. In this respect, Bressoud (2011) suggests that if we want students 
to see the need for evaluating limits of Riemann sums, we ought to provide students with good 
unfamiliar problems involving accumulation. 
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Rationale 
The current literature on university mathematics education shows that there exists a divide between 
mathematics as experienced in school and as practised at university (Gueudet, 2008). Some scholars 
have gone as far as suggesting that school and university mathematics are distinct disciplines (Sfard, 
2014). In calculus, key mathematical concepts such as function, limit, derivative, definition or proof, 
which students are familiar with from school, take an entirely new meaning at university. Thus, 
calculus students struggle not only to extend and refine mathematics learned in school, but also to get 
to know in a very different way mathematics they thought they already master. Moreover, calculus 
students need to re-learn the tacit rules of talking and doing mathematics in order to participate in the 
university mathematics discourse, which is “as far removed from what the student knows from school 
as a discourse can be” (Sfard, 2014, p. 200). 

Nevertheless, a growing body of evidence indicates that student transition to university mathematics 
is typically left implicit in the instruction at undergraduate mathematics courses (e.g., Fukawa-
Connelly, Weber, & Mejía-Ramos, 2017). The research literature highlights many negative 
consequences of the implied requirement from students to take on the responsibility for their 
transition processes (e.g., Dreyfus, 1999). A partial solution to this problem is sometimes given in the 
form of mathematics 'bridging' courses, for example introduction to mathematical proof courses. 
However, it is not clear to what extent students can comprehend and internalize the subtle and tacit 
rules of the university mathematics discourse in this setting. A different approach for supporting 
university mathematics newcomers, which is the focus of this paper, are transition-oriented 
pedagogies that address student transition processes directly and explicitly within undergraduate 
mathematics courses. The questions guiding this article are: (1) What are the characteristics of a 
transition-oriented pedagogy in proof-oriented calculus courses? and (2) How can instructors in these 
courses be supported towards assuming transition-oriented pedagogies? 

Theoretical background 
There are well-documented barriers to transition-oriented pedagogies in calculus. First, it is not clear 
how to operationalize student transition in terms of well-defined and assessable learning objectives. 
Not only ways of doing and thinking about mathematics are primarily tacit, they are also not fully 
agreed upon within the mathematics research community. For example, while it is widely accepted 
that students should learn the norms determining what constitutes a mathematical proof, studies have 
shown that different university mathematics instructors apply different norms to determine the 
legitimacy of proofs (Miller, Infante, & Weber, 2018). Another barrier to transition-oriented 
pedagogies is that some instructors do not consider ways of doing and thinking about mathematics as 
legitimate content of mathematical courses (Schoenfeld, 1994; Nardi, 2008). Moreover, students 
themselves have diversified views regarding what constitute legitimate content. For example, Dreyfus 
(1999) noted that his calculus students often complained about the requirements in his courses, 
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arguing that “they should not be required to write text because they are taking a mathematics class 
rather than a literature class” (p. 89). Despite these barriers, studies that investigated teaching in 
calculus courses suggest that although student transition is typically not discussed explicitly in class, 
it has significant impact on teaching decisions instructors make while planning courses or lectures, 
presenting proofs in lectures, or assessing student work (e.g., Pinto, 2018; Pinto & Karsenty, in press). 
However, there is ample evidence that instructors’ attempts to convey informal mathematical content 
in lectures are often not productive, and in some cases may even end up confusing students (e.g., 
Fukawa-Connelly et al., 2017). In this paper, I re-visit two of my studies that investigated teaching 
practice in calculus courses and re-examine the data and the findings in order to gain insight into the 
pedagogical challenges that instructors face when attempting to support student transition. My 
analysis draws on Commognition theory (Sfard, 2008) in order to characterize the learning that takes 
place in calculus courses. Due to limitations of space I do not discuss here this framework, and leave 
it implicit in my analysis. 

Study 1: Lack for a shared discourse for informal mathematics 
Over the last seven years, I have conducted a series of studies that investigated the content that 
calculus instructors try to convey, explicitly or implicitly, in their courses. One of these studies (Pinto, 
2018) investigated variability in the content two teaching assistants (TAs) tried to convey while 
teaching different sections of the same proof-oriented calculus course. I chose this particular calculus 
course because members of the mathematics department identified it as one of most difficult courses 
for undergraduates, and as a significant milestone in school-university transition. A second reason 
was that the lecturers and teaching assistants in this course made considerable efforts to coordinate 
the teaching in the different sections. The TAs met every week to decide together on the goals and 
content of their lessons, and they prepared a common lesson-plan that reflected their goals. I examined 
two lessons that focused on the definition of the derivative. My analysis showed substantial diversity 
in the content the TAs tried to convey. Specifically, I found that while on the surface the TAs were 
discussing the same definitions and the same examples, implicitly the TAs were trying to foster 
different kinds of meta-level learning. In particular, the TAs identified different transition-related 
challenges that they tried to address, for example the transition from the view of derivative as a 
property of a function as a whole, to a local property of function at a point.  

While some diversity with respect to the content different instructors try to convey is unavoidable 
and may even be desired, in this case, the TAs seemed unaware of this diversity, and presumed that 
the staff meetings and common lesson-plan suffice to ensure students in different sections receive 
comparable opportunities for learning. However, the impact of these measures turned out to be limited 
to object-level learning. There could be various explanations for this gap, but one that seems best 
aligned with the data is that the course staff lacked a shared and explicit discourse for meta-level 
learning in calculus. By and large, the mathematical discourse in the staff meetings was restricted to 
object-level learning – definitions, theorems and proofs – whereas the mathematical discourse of the 
TAs reflections on their goals and considerations during the interviews revolved mostly around meta-
level learning. Generally speaking, the TAs’ discourse about object-level learning was more formal 
and standard than their discourse about meta-level learning, which tended to be colloquial and 
individual. The TAs had an abundance of relatively well-agreed upon words at their disposal when 
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communicating about object-level learning, for example: concept, definition, theorem, corollary, 
proof, example, procedure, algorithm. In contrast, the TAs had they own distinct vocabularies for 
meta-level learning, for example: mathematical thinking, mathematical skills, mathematical intuition, 
an appreciation of mathematics, a sense of aesthetics, practices of making sense, heuristics, working 
knowledge. It seems that the lack of shared discourse for the meta-level content that students are 
expected to learn in calculus hindered the TAs’ efforts to share and bring for discussion their goals, 
and to coordinate the content in their lectures. 

Study 2: Resolving tensions between different norms of proof  
The following took place in a calculus course (Pinto & Karsenty, in press): The professor, Mike, 
stated Cauchy’s Mean Value Theorem and then informed class they will now prove this theorem. 
Mike’s presentation comprised three parts. First, he suggested a naïve approach for proving, and 
demonstrated how this approach ends up with no fruitful result. Then, Mike reflected on this ‘failure’ 
and suggested a revised approach, which was based on an additional hypothesis. This effort indeed 
yielded a valid proof. Finally, Mike demonstrated how the proof he presented could be adapted into 
a two-line argument that does not rely on the additional hypothesis. He concluded his presentation by 
stressing that the first two parts of the proof he presented are in fact redundant, as the two-line 
argument is mathematically valid, and in fact is identical to the proof presented in the textbook; 
however, Mike added, this two-line proof is unintelligible. In their home assignment, the students 
were asked to prove the theorem they just learned. One of the students, whom we will call Jane, 
submitted a proof that included her version of the ‘redundant’ chain of statements Mike presented at 
the lecture, which included several errors that could indicate significant mis-comprehension. The 
remainder of Jane’s proof – the concluding two-line argument – was error-free. What drew my 
attention to this scenario was Mike’s written feedback on Jane’s proof; rather than highlighting errors 
in the ‘redundant’ part of Jane’s proof, Mike instructed Jane to completely remove this part, ignoring 
apparent issues of miscomprehension therein. Why did Mike flatly reject his own addition to the 
textbook, which according to him, made the proof more intelligible? 

It is widely recognized that in their first proof-oriented courses, students infer norms of proof from 
the tacit modelling implied in the way proofs are presented to them in lectures and in textbooks, and 
from how their own proofs are assessed (Dreyfus, 1999). Thus, variation in the norms of proof in 
different pedagogical contexts in these courses makes student transition even more challenging. For 
example, when students are asked to prove a mathematical statement in a certain context they need 
to decide whether ‘prove’ means to construct a polished “textbook-like” proof, to present a proof with 
meta-level commentary similar to the way proofs are presented in lectures, or perhaps to present a 
narrative that best expresses their understanding, in their own words. A possible resolution is to urge 
instructors to avoid as much as possible variation in the norms of proof, so to not confuse students. 
However, an analysis of Mike’s goals for teaching proofs in calculus illustrates that variation in norms 
may be unavoidable and even undesirable, since different norms of proofs are better aligned with 
goals (Pinto & Karsenty, in press). For example, while grading proofs Mike had to decide whether to 
admit proofs that include ‘redundant’ text, such as student’s reflection on their process of proving, or 
to adhere to the shared norms of the mathematics research community, which aim to conceal 
individual and contextual features, including the prover’s thinking and understanding. Thus, choosing 
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which norms of proofs to endorse, explicitly or implicitly, is a genuine and recurring dilemma for 
calculus instructors. Admitting student proofs with ‘redundant’ text can help instructors assess 
student comprehension and provide better formative assessment, but it could also lead students to 
learn to write proofs that mathematicians would not accept.  

Concluding remarks 
In this paper, I highlighted two transition-related pedagogical challenges in calculus: communicating 
explicitly meta-level content, and choosing which norms of proofs to endorse in different instructional 
contexts. These challenges suggest several research trajectories that can support calculus instructors 
in assuming transition-oriented pedagogies. First, scrutinizing the meta-level content in calculus 
courses, and identifying barriers that hinder communication of meta-level, towards a shared and 
refined discourse for meta-level content in calculus. Developing such a discourse could help calculus 
instructors to learn from and with their peers about meta-level learning, and to communicate in class 
content that is currently left implicit. Second, identifying pedagogical tensions and dilemmas that 
relate to meta-level learning in calculus courses, towards promoting instructors’ awareness of the 
impact on student transition of various teaching practices.  
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Calculus is still being taught, largely, using traditional methods-based approaches. Efforts to reform 
calculus have emphasised conceptual development over skill development.  

Calculus has been so successful because of its extraordinary power to reduce complicated 
problems to simple rules and procedures. Therein lies the danger in teaching calculus: it is possible 
to teach the subject as nothing but the rules and procedures — thereby losing sight of both the 
mathematics and of its practical value. (Hughes-Hallett et al., 1994)  

Their guiding principles for writing their textbook were (1) that every topic should be presented 
geometrically, numerically and algebraically; and (2) that formal definitions and procedures evolve 
from investigation of practical problems.  

To test the assertions that (i) traditional teaching still focuses on skills, and (ii) students do not 
programme computers, or otherwise consider how technology works in parallel to calculus, I 
undertook an analysis of textbooks. Space here precludes an extensive selection of texts, or detailed 
methodology or results. Stewart (2013) was selected as representative as perhaps the most popular 
“calculus for mathematics” textbook, with Hughes-Hallett et al. (1994) as a reform calculus textbook. 
Stroud & Booth (2013) and James (2015) represent calculus for engineering students. 

It is clear from all these textbooks that students are required to learn a range of traditional methods in 
anticipation of their subsequent use. (Stewart, 2007, p. 332) does contain a discussion of the 
limitations of integration in terms of elementary functions, at least acknowledging the problem exists. 
A similar discussion is in (Hughes-Hallett et al., 1994, p. 407). However neither James (2015) nor 
Stroud & Booth (2013) discuss the limitations of the traditional integration methods. These books 
contain rather little explicit use of technology beyond using a calculator or computer that can graph 
functions. In James (2015) students are encouraged to “Check your answers using MATLAB or 
MAPLE”, but these tools might be useful for finding answers in the first place. Students are not asked 
to programme code, rather technology is used as a “black box” function. 

The ability to search online, and to use software such as computer algebra systems (CAS), changes 
our relationship with knowledge in a fundamental way. It is no longer necessary to master a method 
before the situation requiring it is encountered. Consider the Lambert W-function. The logarithm is 
the solution x of ex=k, the Lambert W-function is the solution x of xex=k. I.e. x=W(k)⇔ xex=k. The 
Lambert W-function has been studied in many areas of mathematics, over the last 250 years, and its 
properties rediscovered by a variety of mathematicians, (Corless, Gonnet, Hare, Jeffrey, & Knuth, 
1996). I became aware of W when trying to find the solutions to delay-differential equations 
(Ilchmann & Sangwin, 2004). Maple returns solutions in terms of W, something at that point I did not 
understand. This reversal from pre-existing skills to interpreting the results creates a novel 
educational task and calls into question the necessity of teaching a comprehensive corpus of skills. 
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Some educators were initially positive about CAS, but CAS have proved difficult to learn. Arguments 
about technology, conceptual development and technical fluency, are over 400 years old. E.g. the 
invention of the slide rule in the 1630s generated a heated debate which has hardly progressed today. 
The question “Should Students Learn Integration Rules?” was considered by Buchberger (1990) who 
developed the White-Box/Black-Box Principle for using (symbolic) software. When “area X” 
(e.g. symbolic integration) is new to the students, “the use of a symbolic software system realizing 
the algorithms of area X as black boxes would be a disaster”. When area X has been thoroughly 
studied students should be allowed and encouraged to use the algorithms available in the symbolic 
software systems.  I do not agree with this principle. Instead, I want to propose an alternative, the 
mathematical apprenticeship, as a guiding principle for educational development. The proposal is 
based on the observation that traditionally, at least during the apprenticeship stage, an apprentice 
craftsman would make their own tools.  

A mathematical apprentice should write software in parallel to learning theory and through this 
earn the right to use the professional software packages.  

For example, writing a function which calculates the symbolic derivative of an elementary expression 
is a very simple task in recursive programming. Writing a differentiation function also necessitates 
discussion of the general rules, and derivatives of specific functions.  For example, the following 
Maxima code defines a function capable of differentiating any polynomial ex in the variable v written 
in any form. 
mydiff(ex, v):=block(  if freeof(v, ex) then return(0), 
  if atom(ex) then return(1), /* The only atom not free of v is v! */  
  if op(ex)="+" then return(map(lambda([ex2], mydiff(ex2, v)), ex)), 
  if op(ex)="*" then return(block([A:part(ex, 1), B:apply("*", rest(args(ex)))], 
      mydiff(A, v)*B + A*mydiff(B, v) 
  )), 
  if op(ex)="^" and freeof(v, part(ex, 2)) then  
      return(block([A:part(ex, 1), B:part(ex, 2)], mydiff(A, v)*B*A^(B-1))), 
  return('diff(ex, v)) 
)$ 

This function includes the chain rule for exponentiation, linearity of addition and the product rule.  
Further rules can be added in due course.  Edge cases, such as f(x)=|x|, could be included depending 
on the group. Mathematicians will be interested in foundations (e.g. limits and how these are used for 
individual functions) and completeness, engineers might not be so interested in these. Writing a 
function which “simplifies" the resulting expression is much harder, so students would write mydiff 
but use an existing simplify as a first pass.  At some point the student might want to consider 
“simplification” as well.  Students are going to use software: it is ubiquitous. We need students to 
both use software effectively, and we need a smaller group of students to maintain this software and 
further develop it. This principle applies to both pure mathematical specialists, and to service courses 
for students on engineering degrees, although the details of the tasks suitable for each group will 
differ according to context as appropriate. 

Calculus itself is changing, with a much greater emphasis on numerical methods and an increasing 
acceptance of the legitimacy of numerical (rather than closed form analytical) solutions. Users of 
contemporary calculus place a much greater emphasis on simple programming using packages such 
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as MATLAB and Maple. Acheson (1997) provides a succinct manifesto for calculus at the start of 
the 21st century, including code for students to programme themselves. 

A further major disconnect is that problems in traditional calculus courses are designed for students 
to do by hand. “Tables of integrals are very useful when we are confronted by an integral that is 
difficult to evaluate by hand and we don’t have access to a computer algebra system”. (Stewart, 2007, 
p. 328). When will a professional calculus user have access to paper-based tables of integrals but not 
have access to a simple computer, or internet access? CAS are capable of running on very modest 
hardware, on Android (i.e. a phone), and are open source. Using tables of integrals do generate an 
appreciation of algebraic form (e.g. to match up the completed square in the denominator of a partial 
fraction). While these skills are likely to be harder to develop without the requirement of doing 
integrals by hand, the premise that students won’t have access to a CAS is unlikely to be satisfied in 
any realistic scenario. 

We do not teach the theory or practice of the algorithms upon which current technology relies. No 
mathematics department, of which I am aware, teaches the Risch algorithm for symbolic anti-
differentiation, Risch (1969). The mathematical apprenticeship addresses this problem, opening up 
the workings of the software from the start and providing those students inclined to do so moral 
permission to question and further develop the software itself, in a way merely using a provided 
package does not. This proposal necessitates a radical re-thinking of the importance of traditional 
heuristic methods relative to contemporary comprehensive algorithms. This radical re-thinking is the 
most difficult part of this proposal. 

Unlike the White-Box/Black-Box Principle, the apprentice does not start with foundations. Students 
will use well-developed libraries long before they study the area thoroughly. Indeed, in general 
apprentices do not generally start with foundations. E.g. apprentice pilots are flown to a safe height 
and fly the plane on the first day of training. The instructor might only permit them to operate the 
stick while the instructor operates all other controls, letting the student focuses on one thing. 
Similarly, the mathematical apprentice will be given software tools and use some existing packages 
to support the development of their tools. For example, writing a floating-point library will not be the 
first step, but they will eventually want to understand and implement the issues discussed in 
(Goldberg, 1991). In fact, the difficulty of representing continuous real quantities in a finite state 
machine is a central issue in real analysis. Simplification of symbolic expressions should be available 
at the outset, and students will start by using these, probably without noticing or questioning them 
too much. 

The mathematical apprentice is a deeply constructivist approach to teaching. Making tangible things 
(even in code) can be satisfying and motivating, as well as challenging and frustrating. With careful 
design a student’s code will build into a significant coherent package the student can look back on 
with pride. Indeed, learning normally involves recreating something which already exists. Expecting 
mathematical apprentices to write software which already exists is not a bogus task, quite the reverse. 
Making a toy tool builds an appreciation and respect for the real thing. 

There are technology specific issues, such as efficiency and accuracy, which contemporary students 
need to understand. The apprenticeship model naturally addresses these. 



 

 

 146 

Computer languages come and go. Some languages are better than others. The apprentice will need 
to appreciate this problem, and this proposal is agnostic to language. This is a realistic stance. See, 
for example Project Euler, https://projecteuler.net/ where people solve mathematical 
coding problems in whatever language they choose. Once they have the correct answer they earn the 
right to engage in the online discussion and see other people’s solutions in other programming 
languages. Unlocking, in the sense of Project Euler, gets you access to the discussions and for the 
mathematical apprentice reaching a particular standard will unlock the in-built professional packages. 

A case might be made that discussions of the theoretical limits of calculus should be placed in the 
real analysis course, rather than in the calculus course. However, real analysis courses almost 
exclusively provide expositions of the theory of integration (e.g. Riemann or Lebesgue integration), 
and so do not discuss computational aspects such as the algorithm for obtaining anti-derivatives in 
terms of elementary functions. 

Calculus remains a largely paper-based subject, dominated by recipes and traditional methods. 
Students are still expected to learn calculus methods which are outdated, and upon which no current 
CAS are based. The mathematical theory for the limitations of symbolic integration in terms of 
elementary functions is simply not taught and is hardly mentioned. The mathematical apprenticeship 
offers a practical suggestion for addressing these disconnects. 
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In 2013 Jones applied Sherins’ (2001) symbolic forms to students’ interpretations of the definite 
integral, classifying their reasoning in terms of area under a curve, function matching, and adding up 
pieces. Jones (2015) later refined his description of the adding up pieces symbolic form as a 
multiplicatively-based summation (MBS) conception that was “highly productive” in engaging 
students in both the mathematical structure of the definite integral as well as in modeling for physics-
based contexts. This Riemann sum interpretation of the definite integral  focuses on adding 
up many terms derived from a multiplicative relationship between a (possibly) varying integrand f (x) 
and a small Δx, a quantitative conception that we call a local Riemann product. The same quantitative 
structure may also be conceived with an infinitesimal differential, f (x)×dx. The products in this 
conception are derived by partitioning the whole using a parallel multiplicative relationship that what 
we call a basic model which is valid for constant quantities. Such decompositions to the Riemann 
sum structure have been stressed by math, engineering, and physics education researchers as essential 
for STEM student success, including mathematics majors (Jones, 2015; Meredith & Marrongelle, 
2008; Sealey, 2014). In 2015, Oehrtman showed that an MBS interpretation was insufficient for 
students constructing definite integrals from basic models that are not a product or that do not partition 
into a local Riemann product. Our study seeks to further explore ways in which students 
conceptualize definite integrals in these cases and identify key aspects of their reasoning which lead 
to productive results. Specifically, we pose the question: What interpretations of definite integrals 
and basic models are productive for students as they progress through increasingly complex definite 
integral modeling tasks? 

Because our study seeks to understand students’ progress beyond an integrand´differential 
quantitative relationship, we recruited students who were likely to have already developed some MBS 
conception. Six participants were chosen to work in pairs from a second semester calculus course in 
which the instructor utilized a calculus curriculum emphasizing quantitative relationships in the 
Riemann sum (Oehrtman, 2016). Each group was first asked to discuss their general interpretation of 
a definite integral, followed by a series of tasks chosen to reveal their reasoning while modeling with 
definite integrals progressing from simple rate´time contexts to situations that obscure the product 
structure of the differential form such as electrostatic force from an inverse square law. We analyzed 
the problem-solving and modeling activity of the students through Dewey’s theory of inquiry 
(Dewey, 1938) and Thompson’s (2011) theory of quantitative reasoning.  

The result of our open & axial coding (Strauss & Corbin, 2015) is a framework that characterizes 
how students work through definite integral tasks which we call a Quantitatively Based Summation 
(QBS) framework for the definite integral. Generalizing from the MBS conception, the interpretation 
of the definite integral in a QBS focuses on the rich quantitative reasoning within and among what 
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we call the basic, local, and global models. The basic model represents the quantitative relationship 
which would apply to the situation if the quantities involved were constant values, the local model is 
a localized version of the basic model applied to a sub region of the original situation (typically within 
a partition), and the global model is derived from an accumulation process applied to the local model, 
whose underlying quantitative reasoning is encoded in the differential form. 

We briefly illustrate the components and relationships of the QBS framework with a sample of work 
from students, Brian and Caleb (see Figure 1). This pair was able to successfully complete and justify 
all four tasks of the sequence.  

When pollen from red cedar trees is released from 
their cones it travels through the air. Pollen from a 
mature tree settles on the ground with an estimated 
density of d(r) = 37/(10+r) g/m2 a distance r 
meters from the tree.  
Write an integral that gives the mass of pollen 
distributed within 100 meters from a mature tree. 

Figure 1: Mass of pollen task along with Brian and Caleb’s board work 

Brian and Caleb articulated that they think of a definite integral similar to a summation, and that in 
order to obtain the total mass they must add together smaller masses. This conception was tied to their 
general interpretation of a definite integral (global model) as accumulating the result of a quantitative 
operation when one or more of the quantities of a basic model varies. While discussing the 
relationship between the integrand and differential, Brian explained, 

Because the density of pollen is not uniformly distributed you have to find, you have to find what 
the density of pollen is at every different r. And it’s really, it’s similar where two r’s are really 
similar. So your dr is your change in that r, and within this range the density is gonna be really 
similar but if you just say multi, put that plugged in to 100 you’d be assuming uniform density 
over the whole circle, which would be incorrect.   

Expressing that a radius of 100 m in his basic model, [mass]=[density]×[area], would presume uniform 
density, Brian justified a need to partition the situation and develop a local model. Brian reflexively 
recognized the density is roughly constant within concentric thin annuli, that the relevant quantities 
are determined by r, and the problem is geometrically and analytically partitioned by small increments 
dr. As a result, using the basic model as the structure for the overall quantitative relationship desired, 
Brian developed a parallel local model, 

[mass in ring of radius r] = [density at r] × [area of ring of radius r]. 

Because Brian and Caleb observed that density is nearly uniform on these regions they felt that this 
partition generated accurate estimates, which accumulated to a global model (expressed as an 
integral). When asked to justify the 2pr in the [area of ring of radius r] component of their local model 
Brian clarified, 

You have the circumference, because that’s the distance around the circle, which when you cut 
the circle and spread it out and make it into a rectangle that would be the length of the rectangle. 
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But in order to get an area you have to multiply a rectangle length times its width. And your width 
would be your dr which is your change in r which is a very small number where the density is 
nearly uniform. 

For Brian and Caleb the differential, dr, was a quantitative component of the area measurement within 
their local model, not a stand-alone small change in radius; a quantitative relationship which 
represents a distinction from the local Riemann product structure described in the literature.   

 
Suppose a 10-meter chain with a total uniform mass of 15kg is freely hanging from the 
roof of a building. Write an integral that represents the total energy required to lift the 
chain to the top of the building. 

Figure 2: Two quantitative interpretations of the energy task: Matt (left), Julia (right) 

It is important to note that the quantitative reasoning needed within the basic, local, and global 
models, including the relationships between the models, is often non-trivial. There is also not always 
a canonical way to develop a local model from a global model. For example, another pair of students, 
Matt and Julia, was presented with a task involving the energy required to lift a chain to the top of a 
building. While using the same basic model, [energy]=[acc_of_gravity]×[mass]×[height], they 
individually conceived of two different conceptual partitions of the energy in this situation; these 
interpretations resulted in different appropriate local models (see Figure 2). As Matt was constructing 
his local model he anticipated the integral summing the energy required to pull up the remaining chain 
over small increments. This interpretation resulted in Matt developing a local model that was 
quantitatively a local Riemann product, consistent with the integrand´differential quantitative 
relationship described by Jones (2013, 2015). Julia, on the other hand, conceived of the integral 
summing the energies required to lift each small section of chain. This required that she partition the 
mass along small portions of the chain and resulted in the differential being an intrinsic component 
of a local model that was not a local Riemann product, as the differential was quantitatively 
conceptualized as part of the mass. To reorganize, or separate, the differential from the mass 
component of the local model into an f(x)×dx multiplicative structure would result in the loss of 
quantitative meaning for the differential.   

As illustrated in these examples, when creating a definite integral to model a quantity in a situation 
that was not a routine exercise for the students, they developed elements of their basic, local, and 
global models in highly nonlinear ways. In some tasks, students partitioned non-product basic models, 
such as an inverse square law for electrostatic force, into local models with a parallel quantitative 
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structure. In others, students constructed completely different local models based on their global 
model partitioning. In some instances, students thought simply of a basic model as a single quantity 
A with a differential dA as the corresponding local model. Although it is theoretically possible to 
reinterpret such local models as local Riemann products, for example [mass]=[concentric 
density]×[annulus width] in the pollen task, no student was observed to do so. Correct and incorrect 
steps toward a solution were also heavily influenced by the students’ quantitative reasoning within a 
symbolic form for the definite integral. 

This study and resulting QBS framework highlight the importance of quantitative reasoning in the 
development of local and global models in definite integral modeling tasks. This suggests specific 
attention should be devoted to the quantitative relationships within 1) the differential form as a local 
model, including those that are not local Riemann products, 2) the symbolic form of the definite 
integral, and 3) the interplay between basic, local, and global models in the development of the 
differential form.  
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Introduction 
Most university mathematics instructors are aware of the shortcomings significant numbers of 
students have with algebra and how they impact students’ success in university mathematics courses. 
McGowen (2017) notes that many who teach mathematics at the university level dismiss this issue as 
“not my problem” or “just algebra” and do not do anything to keep this from being the downfall for 
many students. This problem may not be well understood. Much research has focused on 
understanding students’ difficulties with school algebra (e.g. Booth, Barbieri, Eyer, & Pare-Blagoev, 
2014; Stacey, Chick, & Kendal, 2004), and on students’ difficulties with Calculus (e.g. Bressoud, 
Mesa, & Rasmussen, 2015; Tallman, et al., 2015), but research on students’ challenges with school 
algebra specifically in calculus courses is scarce. Reeder (2017) and McGowen (2017) cite a 
procedural orientation in school mathematics as the culprit for leaving students with a superficial and 
fragmented understanding of algebra that creates challenges for them in university level mathematics. 
Stewart (2017, p. vii) points out, “in college as the complexity of mathematical ideas increases 
rapidly, the unresolved high school algebra problems mount up progressively and continue to create 
further distress.”  The purpose of this study is to examine students’ thinking as they encounter 
algebraic problems within a calculus context to shed light on the origin of these difficulties.   

Theoretical framework 
Our framework is based on Skemp’s (1979) model of intelligence. We drew on a coherent segment 
of his model and utilized examples applicable to our study to analyze students’ mathematical thinking 
and actions (Reeder et al., 2019).  Skemp’s model claimed that most human activities are goal 
oriented. To explain how humans organize their actions, he used the metaphor of a director system, 
and defined the idea of knowing that, as possessing an appropriate schema. In his view a “schema is 
a highly abstract concept” (p. 167). He defined “a path as a sequence of states and a plan consists of 
(i) a path from a present state to a goal state; (ii) a way of applying the energies available to the 
operators in such a way as to take the operand along the path” (p. 168). He further described “the 
connection between knowing how and being able to is the connection between having arrived at a 
plan and putting it into action” (p. 184). In his view, a “prerequisite for the production of these plans 
is understanding: the realization of present state and goal state within an appropriate existing schema” 
(p. 170). Based on some preliminary work with this model, our working research questions are:  How 
do students respond to algebra processes in the context of calculus problems? What are their plans 
and what paths do they take to reach their goal state?  

Research activities 
Combining our resources and expertise as mathematics educators working in the mathematics 
department (Stewart) and at the college of education (Reeder), we began our work by showing 
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examples of consequences of algebra shortcomings in college courses (Stewart & Reeder, 2017a) and 
launching a research study focused on identifying and cataloguing the most common algebra errors 
made by students in introductory mathematics courses. Our first study involved assessing exam 
questions from nearly 600 college algebra, business calculus, and calculus I students’ exam scripts 
(Stewart & Reeder, 2017b) and establishing the common algebra mistakes (sign errors, errors with 
radicals, etc.). We then hypothesized that students might be able to successfully deal with algebra if 
it were free from the context of calculus. Thus, we developed an instrument (see Table 1) that included 
three calculus problems and some algebra problems that paralleled the algebra required to 
successfully complete the calculus problems. This allowed us to determine if students struggled with 
algebra when it was within the context of a calculus problem but not when it was in a form similar to 
the way they would have experienced in high school. At the end of a 16-week semester, 84 calculus 
students were included in this study. After coding (see Table 2) and analyzing the data, our findings 
were somewhat inconclusive; students made errors in the calculus problems and with the algebra 
problems and the errors were not consistent.  When asked which was more challenging, algebra, 
calculus, or both, 57% indicated algebra, 31% indicated calculus, while 12% indicated both. Their 
comments overwhelmingly expressed their frustration and anxiety. One student wrote: “I felt as it I 
hadn’t learned anything or retained anything…I want to be better at math, but I don’t know how.”  

Table 1: The Calculus and Algebra questions 

 
Table 2: Potential errors for Calculus and Algebra contexts 

 

Based on our research we have established two common types of calculus problems with 
corresponding algebra occurrences in those problems. These are presented as problems wherein the 
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calculus precedes the algebra (Type 1, LHS) and wherein the algebra precedes the calculus (Type 2, 
RHS) (see Table 3). Analysis of both types of Calculus I problems reveals that in Type 1 calculus 
problems, many students can take the first derivative, but cannot carry out the many steps of algebra 
to complete the problem (Stewart & Reeder, 2017). Likewise, analysis of Type 2 calculus problems 
reveals that many students either try to avoid the algebra in the first steps altogether, or have difficulty 
with the algebra that often involves rationalizing the denominator, or factoring, which results in 
incorrect answers (Reeder, et al., 2019). 

Table 3: Type 1 (LHS) and Type 2 (RHS) examples.  

 
Current work 
In a case study in Fall 2017, at the end of the semester prior to final exams, we administered a 
modified version of our calculus and algebra tests to a group of 33 calculus I students. For this paper 
we analyzed one set of calculus/algebra questions related to limits (see Table 4). We found that only 
10 students performed the correct procedure. These students also performed well doing the algebra 
questions. Among the 10 students, seven chose calculus as their main problem, two said algebra and 
one said both algebra and calculus. Naturally, we expected to hear that students had difficulties with 
calculus, and not with algebra. Among those who were unsuccessful, some claimed 

Table 4: Calculus students’ responses to the limit question  

 
that the limit does not exist, others got involved in doing endless algebra with no way out, and some 
students left the question blank. To take a closer look at students’ reasoning, we interviewed several 
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calculus students and using Skemp’s model (1979) examined their thought processes solving the same 
limit problem. The result showed that students struggled to resolve their algebra issues in the context 
of this problem (Reeder, et al., 2019). Currently, we are refining our instruments and hoping to 
theoretically explain why these problems are persistent and find ways of incorporating interventions 
to improve instruction of calculus. We are concentrating on the limit problems, as they are 
fundamental to calculus and often create enormous calculation and conceptual difficulties.  
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Introduction 
Studies that investigated the learning of the derivative symbolically and graphically have found that 
students tend to refer to the symbolic register when they learn about derivative (Yoon and Thomas, 
2015). Despite this tendency, several scholars have argued that understanding the mathematical 
relationship of the function and its derivative graphically may lead to conceptual understanding of 
the concept of derivative (Haciomeroglu et al., 2010; Ariza et al. 2015). To improve students’ 
conceptions of the derivative, mathematics educators have been reflecting on their students’ 
endeavors, with emphasis on conceptual developments in a technological environment (Berry and 
Nyman,  2003; Ubuz, 2007). Most of these studies, however, have investigated students’ graphic 
understanding of the derivative in different tasks, and only a few have looked into how students 
construct mathematical meaning of the function-derivative relationship as they interpret the linked-
dynamic function and derivative graphs. And relatively few studies have explored the role of dynamic 
digital artifacts in prompting the construction of the mathematical meaning of the function-derivative 
relationship.  

This paper considers the use of dynamic digital tools for developing the understanding of the function-
derivative relationship. In doing so, it aims also to reveal the general potentials of dynamic and linked 
representations in learning fundamental calculus concepts, and to provide some hints regarding the 
theoretical principles behind them. The main objective of this study is to characterize how students 
endow with meaning the function-derivative relationship when learning with dynamic digital 
artifacts. To this end, we used the semiotic mediation theory (SMT) (Bartolini Bussi and Mariotti, 
2008) to identify the evolution of personal meanings of the function-derivative relationship, and how 
this meaning evolves into mathematical meaning. 

Theoretical framework   
The SMT (Bartolini Bussi and Mariotti 2008), which guided this study, claims that the relation 
between artifact and knowledge is expressed by culturally determined signs and that the relation 
between the artifact and the learners in the course of accomplishing a specific task is expressed by 
signs such as speech, gestures, symbols, and tools. Bartolini Bussi and Mariotti (2008) suggested a 
model of a learning process that takes advantage of the potential of artifacts.  The model aims to 
describe how meanings related to the use of a certain artifact can evolve into meanings recognizable 
as mathematical. The SMT assumes that social interaction and semiotic processes play a key role in 
learning, particularly in situation in which learners are encouraged to use the artifact in order to solve 
a given task. The SMT considers learning to be an alignment between the personal meanings arising 
from the use of a certain artifact for the accomplishment of a task and the mathematical meanings 
that are deployed in the artifact. The SMT describes the relations between personal meanings and 
mathematical meaning as a double semiotic relationship. On one hand, we concentrate on the use of 
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the artifact for accomplishing a task, recognizing the construction of knowledge within the solution 
of the task. On the other hand, we analyze the use of the artifact, distinguishing between the 
constructed personal meanings derived by individuals from their use of the artifact in accomplishing 
the task and meanings that an expert recognizes as mathematical when observing the students’ use of 
the artifact in order to complete the task.  

Various kinds of signs are produced in the practical activity with the artifact. The SMT distinguishes 
between three kinds of signs: artifact, pivot, and mathematical. Artifact signs refer to the artifact and 
its use. These signs may evolve into mathematical signs that refer to the mathematics context. The 
mathematical signs are related to the mathematical meanings shared in the institution to which the 
classroom belongs. Through a complex process of evolution of the artifact sign into a mathematical 
sign, other types of signs, called pivot signs, play a crucial role. The characteristic of these signs is 
their shared polysemy, that is, they may refer to the activity with the artifact as well as to natural 
language and to the mathematical domain. 

Method 
The Calculus Derivative Sketcher and its Features  

The dynamic digital artifact used in this study is the Calculus Derivative Sketcher (CDS) (Shternberg 
et al. 2004), in which two dynamically linked graphs are constructed according to the function-
derivative relationship (Figs. 1).  

The basic features of the CDS comprise construction, which allows one to generate a 
graph of a function on the upper Cartesian system of the CDS using the icon buttons; 
and dragging, which allows one to manipulate (move, stretch, etc.) the graphs. The 
design of the CDS determines how the construction and dragging functions are 
actually performed. The graphic user interface of the CDS contains seven icons 

 that are used to cover the different situations of a one-variable 
function graphs (i.e., constant function, decreasing and increasing linear functions, 
decreasing and concave-up functions, decreasing and concave-down functions, etc.) 
(Schwartz and Yerushalmy, 1995). Users can sketch a graph of a function on the upper Cartesian 
system by using one or more of the icons. In response, the CDS displays a function graph consisting 
of segments whose shapes resemble the respective icons that were chosen. In all cases, the CDS 
generates derivative function graph in the lower Cartesian system. 

Participants, procedure, data collection and analysis 

To analyze in-depth the evolution of the personal meanings toward mathematical meaning, this study 
focused on a case of Manhal, a 15-year-old student who volunteered to participate in after-school 
meetings. At the time of case study, the students had already learned the concepts of linear function, 
including the concept of the slope, and of the quadratic function, but not that of derivative. The 
experiment was conducted at a computer lab at the student’s school. The interviewer briefly 
introduced the student to the artifact and showed how to work with it. To identify the processes of 
evolution of personal meanings of the derivative function toward its mathematical meaning, the 
interviewer asked the student to graphically explore and explain out loud the possible connection 

Fig. 1 CDS  
interface 
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between the two graphs on the screen. To collect the data, the learning experiment was recorded 
entirely with two video cameras. One camera was located behind the student to capture his gestures 
of pointing to the computer screen. The second camera was set in front of the student to record him 
and the computer screen. The entire videos were transcribed. The findings presented below are the 
result of three rounds of data analysis. The first round consisted of repeatedly reading the transcripts 
to identify the mathematical elements involved in finding the possible connections between the 
graphs. Next, we looked for the correlations between the two linked graphs identified by the student. 
In the third round of analysis, we identified how the personal meanings evolved into mathematical 
meanings by distinguishing between artifact signs, pivot signs, and mathematical signs. In addition, 
actions with the artifacts and student’s gestures were also analyzed.  

Preliminary results 
In total, five mathematical elements were found: (a) recognizing the relationship between the two 
graphs; (b) recognizing the tangent slope of a curve; (c) recognizing the extremum point in the 
function graph; (d) recognizing the meaning of the inflection point in the function graph; (e) 
recognizing the meaning of the concavity of the function graph. Due to space limitation I will focus 
here just in element (b). During the conference I will elaborate on all the elements.   

During the learning experiment, the interviewer encouraged Manhal to create a new function and to 
examine a variety of graphs.  

Manhal: [I] Now I choose a curved graph [presses the fourth icon  (Figure 6a)]. What is slope? 
[II] No, what is the characterizations of the slope here? [III] I see that the 
slope was a specific value, and it begins decreasing. Why is it decreasing? 
If I move on the graph like this [gesturing with his left hand (Figure 7)], as 
long as I go, the slope decreases. If I add the first graph here (Figure 6b).     

Interviewer: Okay! 
Manhal: You see, its slope is constant. Here the slope is varying because the function is curved. 

Here, too, the slope descends, it starts at two and begins to descend.    
 
In utterance [I] Manhal created an artifact sign using the fourth icon. His 
words “curved graph” suggested that Manhal had endowed the artifact 
sign with mathematical meaning—a curved graph. His question “what is 
slope?” suggests that he was referring to the same mathematical sign 
“slope” he used previously. Changing his question from “what is slope?” 
to “what is the characterization of a slope?” suggested that Manhal 
changed his strategy of making sense of the function graph. To come up 
with a conjecture regarding the characterization of the function slope, 
Manhal used three mathematical signs: “slope,” “specific value,” and 
“decreasing.” He used the last two signs to determine the slope behavior. His words “I see that” 
suggest that Manhal was perceiving the slope variation with his eyes. To answer the questions he 
raised, Manhal performed a “surfing gesture” by his left hand, showing the way a tangent line of the 
function graph may behave (Figure 7). Doing so, Manhal used the word “move on” as a pivot sign to 
exemplify the tangent movement on the graph. The use of the pivot sign and the gestures afford 

Figure 2. (a) Concave-
down function graph (b) a 
constant function graph 
added to the concave-
down function graph 
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Manhal to correlate between the movement on the function graph and various values of the slope of 
function (“as long as I go the slope decreases”). To verify his conclusions, Manhal added the first 
segment to the curved graph, thus obtaining an artifact sign that consists of two segments. Manhal 
endowed the artifact sign with mathematical meanings as a function in which the slope is constant. 
He also made a comparison between the two segments based on their shapes. Namely, Manhal 
endowed the artifact signs with mathematical meaning—as a function—and characterized them 
according to their typicity: one is constant whereas the other is curved. Manhal shifted his attention 
from the upper system to consider the 
lower Cartesian system. His words “the 
slope descends, it starts at two and begins 
to descend” suggest that Manhal was using 
the slope to name the Cartesian system.  

Final remarks 
This study sheds light on the process of artifact signs evolving into mathematical signs by using pivot 
signs. In my talk I will discuss the evolution of the word “slope” and its role in constructing the 
meaning of the function-derivative relationship. This study stressed the importance of the word 
“slope,” which plays a role not only in connecting the graphic and symbolic registers in the definition 
of the limit as a process (Lobato et al., 2012; Park, 2015), but also in graphically constructing the 
meaning of the function-derivative relationship. The word “slope” assumed several meanings in the 
course of the learning experiment. At the beginning of the experiment, it was used as a numerical 
value for a straight line inclination “the slope of the line is 1;” later the word “slope” was used as a 
name of the lower Cartesian system (“this system is the slope”); as a dynamic object which has certain 
properties (increase/decrease, positive/negative), by which the student described the shape of the 
graph; and, toward the end of the learning experiment, to describe the shape of the graph segments. 
This evolution of the meanings of the word “slope” indicates that Manhal transitioned from the point-
specific view to the interval view (Park, 2015), and ultimately constructed the meaning of the 
derivative function. This transition will discuss in depth in my talk.  
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Fig. 3. Manhal illustrating the change of the tangent slope 
of a concave-down function graph.  
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Linear stability or graphical analysis? Routines and visual mediation 
in students’ responses to a stability of dynamical systems exam task  
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Introduction  
Dynamical systems are a crucial topic of differential equations, taught in Mathematics as well as in 
other, e.g. Engineering, departments. In the UK, where the study we report from was conducted, 
differential equations are usually introduced in the second year of study after first year courses in 
Calculus. Despite extensive research in elementary Calculus, at large, differential equations, and 
specifically dynamical systems, are not widely researched topics. Previous work on dynamical 
systems highlighted students’ use of different procedures, analytical, graphical and numerical 
methods and the importance of graphical representations (Rasmussen, 2001). Rasmussen comments 
on the methods needed for the solution of differential equations and notes that: 

“With graphical (or qualitative) methods, one obtains overall information about solutions by 
viewing solutions to differential equations geometrically and by analyzing the differential equation 
itself” (Rasmussen, 2001, p. 56).  

By analysing the work of six undergraduate students, Rasmussen offers a framework aimed at 
investigating students’ understanding of the graphical and numerical methods used to solve 
differential equations. His results show that, while students use various methods, they do not make 
connections between these. Rasmussen notes the scarcity of studies in this area, as does Artigue 
(2016), referring to her own work done as early as the 1980s. Artigue also discusses the limited 
experiences that undergraduate students are offered in terms of differential equations with the main 
focus being on procedures of solving these equations (ibid., p. 13). Both studies stress that the focus 
of the students’ experience in solving differential equations is on the procedures and that this 
experience is excessively compartmentalised.  

The data analysis we present here – in which we take a discursive perspective, Sfard’s (2008) theory 
of commognition – takes this discussion further by investigating the how (procedure) and the when 
(applicability and closing conditions) of a routine (ibid, pp. 208-209) as evident in students’ written 
responses to an exam task that asked them to examine the stability of equilibrium points of two 
dynamical system via linear stability analysis or graphical analysis. We note that the commognitive 
perspective views mathematics as a discourse characterised by word use (e.g. dynamical systems, 
equilibrium points), visual mediators (e.g. sketches of functions), endorsed narratives (e.g. definition 
of equilibrium point) and routines (e.g. examining the stability of equilibrium points). The data and 
analysis we report here are part of a larger study, conducted in the UK, in a well-regarded mathematics 
department. The study investigates students’ engagement with university mathematical discourses in 
the context of final year examinations (Thoma, 2018; Thoma & Nardi, 2017; 2018). 
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The task, the lecturer’s aims and the students’ responses 
The module Differential Equations and Applied Methods was attended by ninety-seven students. The 
first author selected thirty-four student examination scripts for further analysis, to represent a variety 
of marks (we explain the process for another module in Thoma & Nardi, 2017, Figure 3 on p. 2269). 
Here, we focus on the responses to this task in a part of these thirty-four scripts: 

(a) Consider the one-dimensional system ẋ = f(x), where x(t) is a real-valued function of time t ≥ 
0 with x(0) = x0 given, and f(x) is a smooth real-valued function of x. Define what it means to 
say that x* is an hyperbolic equilibrium point for this dynamical system. [4 marks] 

(b) Find the equilibrium points for each of the dynamical systems:  ẋ = x3+x2,  ẋ = 1+sinx, and 
analyse their stability. You may use linear stability analysis or graphical analysis. [6 marks] 

The task initially invites students to recall and provide the definition of a hyperbolic equilibrium point 
for a one-dimensional system (a). Then, the students are given two different one-dimensional 
dynamical systems (b), and they are asked to, first, find the equilibrium points for each dynamical 
system and, then, analyse their stability. There is also a direct instruction regarding the procedures 
that they can choose from in order to analyse the stability “You may use linear stability analysis or 
graphical analysis”. It is this choice that this paper focuses on. The students are allowed to choose 
which procedure they want to use when examining the equilibrium points stability. In an interview 
with the exam-setting lecturer that took place after the final examination, the lecturer comments on 
providing the students with both of the procedures to analyse the stability as follows:   

“I give them a choice, there are two methods of studying stability (...) one of them is not appropriate 
for all of the stability. But the idea is for them..., is to recognize that one of them...to get the full 
marks they have to use the other one, the graphical analysis. (...) I could have asked only for 
graphical analysis without linear stability but I also want to test, to see if they understand linear 
stability in the part which can be used.” 

The lecturer’s aim is dual: first, to give the students the option to use both procedures (linear stability 
and graphical analysis) in analysing stability; and, second, to examine whether the students can 
distinguish which procedure is suitable in the situation. In commognitive terms, the focus here is both 
on the procedure (how), and the applicability conditions and closing conditions (when) of the routine. 
The lecturer places value on the when of the routine. The dynamical systems are selected on purpose 
to provide an opportunity to examine the applicability of the two procedures. For one of the 
equilibrium points of the first dynamical system (x*=0), if one uses linear stability analysis, the 
information from the first derivative is not sufficient to decide on the stability as it gives the value 
zero. This is the same for the infinite equilibrium points of the second dynamical system. 

Of the thirty-four students, two did not attempt the task at all. The rest mainly used graphical analysis 
(e.g. Figures 1 and 2). For the first dynamical system, fourteen students used graphical visual 
mediators to discuss the stability of x* = -1, and twenty-nine for the stability of x* = 0. For the second 
dynamical system, twenty-seven students used graphs. Specifically, for the equilibrium point x* = -1 
of the first dynamical system, eighteen students used linear stability to characterise the stability by 
finding the value of the first derivative at that point, thirteen used graphical analysis and one provided 
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the graph of the function without characterising the stability of the equilibrium point. For the second 
equilibrium point (x*=0), tweny-one used graphical analysis to discuss the stability of the point. Of 
these, nineteen plotted x3+x2 and two plotted the functions x3 and x2 separately; seven used graphical 
analysis but their sketches were not the correct function; one plotted the function but did not 
characterise the stability; and, three provided the characterisation without providing a sketch of the 
function basing their argument on linear stability arguments. Regarding the second dynamical system, 
twenty-four students used graphical analysis. Of these: twenty-two sketched 1+sinx as one function 
and two plotted the two functions separately. Further, three students used graphs in their responses 
but they either did not provide characterisation regarding stability of the infinite equilibrium points 
or provided the sketch of a different function. Finally, five students provided only comments using 
linear stability analysis. In the following, we discuss in detail the responses of two students regarding 
the stability of the first dynamical system. 

Student [03] initially identifies the two equilibrium points and examines both using linear stability 
analysis (Figure 1); identifies (with the linear stability analysis) that the information is not sufficient 
to determine the stability of one of the equilibrium points (x*=0); and, decides to provide the graphs 
of -x2 and x3 in order to analyse the stability. Additionally, in the narrative accompanying the graphical 
realisation of the function, [03] discusses the monotonicity of the function x3+x2 by examining what 
happens on the left and right hand side of the equilibrium point. 

  

Figure 1: Student [03]’ response to task (iib) Figure 2: Student [10]’s response to task (iib) 

In student [10]’s response (Figure 2), there are two graphs: both are attempts at the graphical 
realisation of the function x3+x2. However, both are crossed out (they are the graphs of -x3-x2 and -
x3+x2 respectively, not x3+x2). Although student [10] realises that the procedure to analyse the stability 
of the dynamical system is graphical analysis, the graphs provided are from different functions and 
thus not suitable to decide the stability of the equilibrium point. Both of these students decide to use 
linear stability analysis for x* = -1 and graphical analysis to characterise the stability of x* = 0. The 
when of the routine is examined and both discuss what we classify as applicability conditions in order 
to use linear stability. Further, we note that, despite opting for graphical analysis, the how of the 
routine is different in these two responses. Student [03] provides the graphs of -x2 and x3 and student 
[10] attempts to provide the graph of x3+x2.  
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Conclusion 
The analysis summarised here illustrates that the students are mainly using graphical analysis in their 
characterisation of the equilibrium points. However, we note that there were students who used linear 
stability analysis even though the applicability conditions of the routine were not satisfied, namely 
the value of the first derivative at the equilibrium points was zero; still, the students chose to continue 
with the linear stability analysis. Our analysis also highlights the different procedures that are 
discernible in the students’ responses even when they opt for graphical analysis to discuss the stability 
of the equilibrium points on both dynamical systems. Some sketch the actual function and others 
examine the parts of the function in the same coordinate system and discuss the range where one of 
the parts of the function is above or below the other one.  

Our results highlight the importance of investigating further students’ engagement with the routines 
the exam setter is expecting them to engage with, especially in relation to whether they take into 
account the applicability conditions of each of these routines and the variety of the procedures that 
they could use while deciding on the stability of equilibrium points in dynamical systems. Previous 
work discussed the compartmentalization of these procedures (Rasmussen, 2001); our work offers 
further discussion of whether students take on board the applicability conditions (the when of a 
routine) as well as the various procedures (how) of the routines. We are currently analysing analogous 
data focusing on examination tasks from other mathematical areas as well. 
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If one compares internationally the mathematical ranges of study at universities, one meets again and 
again Calculus as the central beginner course; presumably, this has been the case in Western European 
countries for more than 200 years and is due to the activities of the International Teaching 
Commission at the beginning of the last century. Although there are countless books on the history 
of Calculus, we do not yet know specific historical inventories of Calculus courses as a teaching unit, 
even though some contributions by Coray et al. (2003) and Schubring (2004) point in this direction. 

Although mathematics has developed greatly in its variety, not least because of the possible use of 
computers and tools, and today faces infinite mathematics with a broadly developed discrete 
mathematics, it seems to us that, in a modification of Halmos’ (1980) style of speech, we may award 
the term heart unchallenged - as stated in the title - to Calculus courses. It is now largely forgotten 
that among the many US-Calculus reforms in the last century, an interesting discussion took place in 
1984 in College Mathematics Journal, 15 (5), which was initiated by the book (Ralston & Young, 
1983). These papers explore the question of whether Calculus should give way to an introductory 
course on discrete mathematics. Prominent mathematicians participated in this discussion, e.g. 
Saunders MacLane, Peter Hilton, R. W. Hamming, David Tall, Patrick W. Thompson, John Mason, 
etc.  

This raises the question as to what makes Calculus a highlighted prominent course. In 2005, Lee 
Shulman introduced the term signature pedagogy as a differentiating feature for various scientific 
disciplines. Shulman's basic thesis is that nurseries are of high influence within child development. 
In the same way, this also applies metaphorically in our context, because the Calculus course is a first 
encounter with university mathematics. 

We want to modify this concept and its terminology here and speak of the signature of a course. We 
ask ourselves what are the salient properties of a course constituting a ‘signature’. After that, we 
believe, we can better describe the central role of Calculus. 

Parameters by which a ‘signature’ of a mathematical course is constituted 
Some rather superficial, quantitative traits quickly come to mind: 

i. The role of the specific domain in relation to other subfields 

In mathematics, we are fortunate enough to be able to quantify the relevance of a discipline to a 
ranking fairly reasonably. It is well known that all internationally relevant branches of mathematics 
are listed by a Mathematics Subject Classification1 Index (MSC) updated every 10 years; the currently 
valid MSC comes from the year 2010, a moderate revision is in discussion and planned for the year 
2020. The MSC currently lists nearly 90 mathematical areas, while the area Mathematics Education 

                                                
1 https://mathscinet.ams.org/msc/msc2010.html 
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appears at number 97. The term 'calculus' as such does not appear directly in this list, but we would 
assign 19 branches with the numbers between 26 and 49 to this area. The didactically relevant entries 
around the calculus can be found in field 97 and are subdivided into 9 subareas in category 97I xx. 

ii. Relevance of research within the domain by counting publications 

The Mathematical Reviews database lists more than 1,400 entries that respond to the search term 
'Calculus'. The didactic database MathEduc show 2,800 hits with the word 'Calculus' in the title of an 
article, the zbMath database references exhibit about 700 in the field of education for Calculus-
oriented articles.  

Again and again, technical and didactic thematic issues are devoted to this subject, e.g. The Montana 
Enthusiast (TME) counts 144 articles in the last four years, ZDM Mathematics Education has about 
250 articles since 1997 and all previous International Congresses on Mathematical Education 
(ICME) organized Topic Study Groups on Calculus. Recently, a booklet has been created for the most 
recent ICME in Hamburg in 2016 (Bressoud et al., 2016) where the author was involved.  

iii. Cross-linking degree 

Even insiders would probably not like to conclusively answer the question whether Calculus is a 
course that belongs to the areas of pure mathematics or applied mathematics; and most likely they 
would offer us an as well as. 

iv. Historical dimension 

Another parameter is the historical anchoring of a discipline with archaeological traces still visible. 
It would be possible to determine these parameters for other topics such as linear algebra, discrete 
mathematics, algebra or stochastics; we refrain from doing so because we believe that the reader 
recognizes as proven the dominant role of the teaching unit calculus. With more than 2,600 years of 
experience, Calculus is proud to have a history which can only be surpassed by Geometry. Linear 
Algebra is looking back around 180 years of age whereas Discrete Mathematics is a mere 100 years. 
Corresponding messages to students should not be missing in a course. 

v. Worldview facets of mathematics provided by calculus 

Undoubtedly, we may follow many mathematicians who believe in the unity of mathematics (Atiyah, 
1978). On the opposite side, we have to consider that mathematics has many facets; it seems as if 
there were three (different) mathematics (Ziegler & Loos, 2014) into which each mathematical 
discipline can contribute at various occasions. Thus, the central question whether calculus is 
displaying all these facets or – to use a metaphor – these colors? Yes, indeed. 

In the paper of Ziegler & Loos (2014), the authors try to characterize different world views (belief 
systems about mathematics) (see the first use by Grigutsch, 1996). The author constituted this term 
20 years ago in the German mathematical education discussion (see Leder et al., 2002). Citing the 
world views (for teachers) from Ziegler and Loos and slightly extending these characteristics, we 
should mention: 

• Functioning as a large toolbox for the everyday world of a working mathematician, 
• A large field of research central in pure as well applied mathematics, 
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• A discipline with a long history and a prominent part of culture and simultaneously a key for 
modern technologies. (Hoffmann et al., 1997) 

Obviously, calculus fits into each of these three categories, thus calculus has something for all of 
them. However, we would like to refer to another aspect that seems important to us, especially for 
beginners; this categorization can be transferred specifically to other courses. 

vi. The Front- and Back of Calculus 

In the sense of the sociologist Erving Goffman, it is Hersh (1991), who worked out, that mathematics 
has a front and a back. The purpose of a separation between a ‘front’ and ‘back’ is not just to keep 
the customers (in a restaurant) from interfering with the cooking (kitchen). Thus, separation, in 
reality, often serves legitimate functional reasons. But do we really like to claim a similar separation 
in mathematics learning and teaching? Textbooks of calculus show the front, our exercise booklets 
are more like the back. Calculus is a paradigmatic domain where the learner often has to switch 
between front and back. The following situation illustrates the problem. In Calculus courses, students 
were introduced to real numbers, continuous and finally to differentiable functions; in the later 
paragraphs of the courses, the classical central theorems were deduced and proved. This 
straightforward (linear) organization belongs to the front, is at first glance, optimal, common and 
follows an axiomatic deduction of knowledge, it is like being served in a restaurant.  

However, what has happened in the back, in the kitchen: Continuity of functions is quite different 
from differentiability. The first property is just a segregation concept to exclude more nasty functions, 
whereas differentiability is a quality statement. Of course, it is comfortable being served in the front, 
but on the other hand, mathematicians are challenged to sometimes act also as a cook. Thus, 
instructors should often open, in specific situations, the back for the novice learner. It is up to the 
reader to exploit further examples from calculus. 

For the presenter, Calculus is an old and a young discipline which proudly stands beside other 
important mathematical disciplines. Thus, calculus is indispensable and formative in the education of 
young mathematicians. 
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more familiar routines for determining velocity in a calculus task for 

engineering students 
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In this paper, we describe and analyze the “Svensson’s vacation” problem, designed for a course in 
Single-Variable Calculus aimed at first-year students in a three-year engineering program. Although 
it is not formally required, most students enrolling in the course will have taken courses in 
introductory and linear algebra. The problem was developed for a small-scale intervention aimed at 
introducing elements of inquiry-oriented teaching. In some of the exercise sessions, the students were 
asked to work collaboratively on one or two larger problems designed to support and deepen their 
understanding of the central topics of the course. We wanted problems that include elements of 
modelling and numerical methods, which is not a part of the curriculum in any of the obligatory 
mathematics courses in the three-year engineering program, but which is very useful for future 
engineers (Alpers et al., 2013). Still, we wanted problems to be doable with limited resources, without 
having to rely on access to computer labs or specialized software, for instance. In the analysis of the 
task, we employ a discursive approach, the theory of commognition (Sfard, 2008), building on the 
characterization of mathematical discourse through word use, visual mediators, endorsed narratives 
and routines (Sfard, 2008, p. 133). We describe the setting of the problem first. 

The “Svenssons’ vacation” problem 
The problem is intended for the session on derivatives, with a follow-up as part of the session on 
integrals. The problem consists of two parts. The first is a warm-up task introducing numerical 
differentiation and the notions of forward and central differences. Students are provided with a table 
of values of a function, and are asked to approximate derivatives at a number of points using the table 
and the difference quotients. Using the analytical expression for the derivative as a comparison, they 
are then asked to estimate the error in the approximations. The main problem then reads as follows: 

The Svenssons were going on vacation to Thailand. They packed their bags, got into their car and 
drove off for the airport. After a while, they started worrying that they might have forgotten their 
passports. They drove off at the next exit, and started rummaging through their bags. Sure enough, 
the passports were nowhere to be found. They turned around and drove back home. By now, they 
were in a bit of a hurry. When you’re under stress, finding what you’re looking for takes longer, 
but it turned out alright in the end, and the Svenssons got to the airport on time.  

Attached you see a graph (Figure 1) showing the time in minutes and the position of the Svenssons’ 
car at the corresponding time, measured in kilometers from their house. Please answer the 
following questions: 

What was the velocity of the car at times t=3; 10; 22; 55 minutes? 

What was the average velocity of the car in the time intervals [10,15] and [20,25] minutes? 
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Sketch a graph showing the velocity of the car as a function of time. Does the graph look 
reasonable? Does it agree with the story of the Svenssons?      

During the session on definite integrals, the bulk of which was spent on numerical integration, we 
also included a follow-up to the “Svenssons’ vacation” problem. The students were given a graph of 
the approximation for the instantaneous velocity (Figure 2) and were asked to estimate the distance 
from home for Svenssons after 15 and 25 minutes respectively.  

                
Figure 1: Position of the car at time t                 Figure 2: Velocity of the car at time t       

Analysis of the problem 
The problem aims at engaging students with differentiation (and integration) in a setting where 
functional relationships are not given by formulas, meaning that the familiar analytic differentiation 
routines are not readily applicable. There is also potential for students to form connections between 
the fundamental objects of derivative and definite integral, through exploring the relationship between 
rate of change (RoC) and accumulation (Thompson & Silverman, 2008). Figure 3 schematically 
describes the connections between the main components of the problem.  

 
Figure 3: Structure of the problem       

During the first session (marked by “1” in Figure 3), we expected the students to sketch the graph of 
the velocity using either the geometrical interpretation of the derivative as the slope of a tangent line 
or a numerical approximation of the RoC of 𝑠(𝑡). In the second session (marked by “2” in Figure 3), 
when reconstructing the distance from the graph of the instantaneous velocity 𝑠′(𝑡), we expected the 
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students to do this by estimating the area under the curve or using Riemann sums for the 
approximation of a definite integral.  

The warm-up task is phrased entirely in mathematical language and is highly scaffolded, paving the 
way for the main problem by introducing a routine (numerical differentiation) that can be used to 
approach it. It contains many visual mediators: formulas as well as a table of values. In contrast to 
the warm-up task, the main problem uses an everyday setting and everyday language, and contains 
only one visual mediator, the position-time graph, which provides a partial mathematization of the 
problem. Still, although the questions are phrased in scientific language, the problem formulation 
contains few mathematical terms. As for the follow-up problem about reconstructing the distance 
given the velocity graph, it is also built around a single graph, and is phrased in everyday language.  

Although all questions posed are closed, they do not suggest particular solution methods. Thus, we 
avoid reducing student agency, instead providing students with the opportunity to engage with various 
mathematical routines, both familiar and less familiar. We deliberately chose a setting where the 
function did not have an algebraic realisation, to emphasise the need for numerical techniques for 
handling even very simple real-world problems (Kaput, 1994). Moreover, numerical differentiation 
of discrete data is a topic that is not covered in the lectures, but which is of great relevance for 
engineering students. To answer the first two questions, students need to interpret the graph and 
extract the information needed. These are both routines that should be well-known to them from their 
previous studies. They then need to use this information, first for estimating the instantaneous 
velocity, which in turn can be done either numerically, building on the notion of RoC and using the 
numerical differentiation routine introduced in the warm-up task, or geometrically, by estimating the 
slope of the graph at the indicated times. Whichever method the students choose, it will require them 
to engage with routines less familiar to them. They are then asked to estimate average velocity, a 
routine familiar to them from upper secondary mathematics and physics. Student difficulty with RoC 
has been widely documented (Bressoud, Ghedamsi, Martinez-Luaces & Törner, 2016), and as Hauger 
(2000) points out, students often make sense of instantaneous RoC in terms of average RoC. 
Therefore “calculus teachers should capitalize on this knowledge to help students learn about 
instantaneous rate of change and the derivative” (p. 896). The task allows students to reflect on the 
relationship between average velocity and instantaneous velocity, in terms of the position-time graph. 
Since we expect both numerical and geometrical routines to be used for estimating the velocity, there 
is opportunity for discussion about the relation between these two methods. In the last part of the 
problem, students then need to use one of the routines for estimating instantaneous velocity in order 
to find the information needed to engage in a graph construction routine, namely constructing the 
velocity-time graph. The relationship between such graphs is another topic where student difficulty 
is well documented (e.g. Berry & Nyman, 2003). Moreover, constructing the velocity-time graph 
allows students to see the connection between the derivative as a value at a specific point 
(instantaneous velocity) and the derivative as a function (velocity as it varies over time). By 
numerically estimating the instantaneous velocity at several points and plotting them against time, 
students can see the functional character of the relationship, even though it is not given by a formula. 
Finally, interpreting this graph in the context of the original phrasing of the problem requires students 
to transition between different realisations of the function, from graphical to numerical and back. 
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The follow-up problem also allows students to engage in different types of routines. Again, the lack 
of an algebraic expression requires students to use numerical integration routines, either for 
estimating the area under the velocity curve or by using an approximation with Riemann sums. This 
problem also provides an opportunity for students to see how the Fundamental Theorem of Calculus 
connects RoC and accumulation (Thompson & Silverman, 2008), by realising that the accumulated 
position, that is, the distance, at time t is given by the integral of its RoC, that is, the velocity, from 
the starting point to t. By doing this for different values of t, the students can gain a sense of the 
integral as an accumulation function of the quantity whose RoC we know. This is something that 
students often struggle with, since they are not used to thinking of the upper limit as varying (ibid.). 
A related difficulty, pointed out by Thompson and Silverman (ibid.), is that the role of the variable 
of integration is often a mystery to students, but by considering Riemann sums this role can be made 
clearer. When students have to decide how to divide the interval of integration, the integration 
variable becomes experientially real to them. In fact, we considered asking the students to reconstruct 
the whole position-time-graph, but decided against it since it would have been too cumbersome 
without access to computational software. The problem also requires students to interpret the negative 
area under the velocity curve in terms of accumulated position, something that research has shown to 
be a challenge for students (Bressoud et al, 2016). 

The intervention for which the problem analysed in this paper was designed took place during the 
spring semester 2019. Intervention data is currently collected and analysed. 
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Raising Calculus to the Surface  
The Raising Calculus to the Surface project (RCS) uses small group activities and physical 
manipulatives to help students explore calculus concepts in the multivariable setting. By using dry 
erase markers and tools, like an inclinometer, to measure quantities on surface manipulatives and 
contour mats, as shown in Figure 1, students can engage in authentic mathematical practices, discuss 
new concepts, and uncover geometric relationships behind major theorems prior to formal instruction. 
Formulas for the surface functions are kept secret from students and instructors, providing 
opportunity for students to connect physical characteristics of the representations with the 
contextualized activities as they discuss and debate concepts even before mastering symbolic 
notations. Instructors at 65 institutions spanning high school, two-year and four-year institutions have 
adopted the materials. The project has been adopted by seven physicists, and a related project, Raising 
Physics to the Surface, is extending the approach for undergraduate physics courses. 

Background 
The multiple external representations (MERs) created by the Raising Calculus project help students 
engage meaningfully with mathematical content. Ainsworth (2006) proposes a conceptual 
framework, named DeFT, for considering learning with MERs. DeFT considers the Design 
parameters that are unique to learning with MERs, the Functions that MERs serve in supporting 
learning, and the cognitive Tasks that must be undertaken by a learner interacting with MERs. 
Ainsworth identifies five design dimensions for multi-representational systems: number; distribution 
of information among representations; form; the sequence of representations; support for translation 
between representations. Ainsworth (1999) notes combining MERs allows a second representation to 
(a) support complementary processes or information contained within the first representation, (b) 
constrain the interpretation of the first representation, or (c) support the construction of deeper 
understanding when learners achieve insight using a second representation. 

Data Collection 
Students enter multivariable calculus with various conceptions of derivative. Used prior to formal 
lecture in multivariable calculus, the RCS materials let students extend their prior conceptions. The 
following discussion is based upon the activity design, classroom video data, and the experiences of 
the instructor working in the classroom with 21 multivariable calculus students at a mid-sized regional 
university. Audio and video data captured seven groups of three students working with several RCS 
manipulatives during a one hour activity. This provides seven total hours of data. The video data, 
combined with the instructor’s experience, are used to identify how the various MERs associated with 
the RCS activity help students explore new partial derivatives concepts. 
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Figure 1: Students measure derivatives on a Surface with an inclinometer 

The activity and representations 
The Hotplate activity is designed to help students develop a deeper understanding of partial 
derivatives. In the activity, students work with various MERs including a surface (a tangible graph 
of a multivariable function) and rectangular coordinate grid, a contour plot, and an inclinometer tool 
used to measure slope. The activity sheet uses symbols ∂T/∂x and ∂T/∂y to represent partial derivatives 
and words to provide a context (e.g. the surface represents the temperature of a hot plate), but T is 
not explicitly defined as temperature nor is a formula provided for T. 

During the activity, students (1) identifying locations on the surface matching conditions expressed 
symbolically (e.g. ∂T/∂x < 0 and ∂T/∂x > 0), (2) measure partial derivatives on the surface with the 
inclinometer, and (3) rank the value of a partial derivatives at three points marked on a contour plot. 

Initial transfer between representations with different forms 
Students coordinate three MERs at the activity’s start: words (for context) and symbols on the activity 
sheet, and a surface with a rectangular coordinate grid. These MERs contain similar information 
accessible through context: The activity sheet contains unfamiliar symbols1, like ∂T/∂x or ∂T/∂y, 
which never appear on any other MER. The words on the activity sheet, which say “the surface is the 
temperature of a 10 inch x 10 inch hotplate”, provide a situation that students can use to translate 
between representations. 

The MER’s forms help students transfer characteristics between them: The surface and contour grid 
are public, shared spaces used by three students, while the activity sheet containing the symbols and 
context are private spaces. Students often use language like “temperature is increasing here” or 
“temperature is positive here” when pointing to the surface and referring to “∂T/∂x > 0” on the 
activity sheet. These sloppy descriptions for “∂T/∂x > 0” cause confusion but encourage discussion 
surrounding the meaning of concepts available on the different representations and helps them see 
the necessity of using precise wording. 

Representations constraining function of partial derivative 
Pre-test assessment data indicated students often describe derivatives as “rules” or “slope”, even 
though they may have other descriptions of derivative. By representing the temperature with a 

                                                
1 Students may have seen dy/dx or dp/dt notations instead of f’ notations for derivatives in prior calculus courses. 
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surface, and withholding the formula for it, the activity and MER selection intentionally restricted 
students from accessing derivative rules to discuss derivatives. 

Constraining function to measure partial derivatives on a surface 
With the surface, students quickly recognize that direction is crucial for partial derivatives: Every 
direction has a different slope at a point on the surface, When sitting on opposite sides of a surface, 
students would disagree whether “∂T/∂x is negative” or “∂T/∂x is positive” at a point on the surface. 
They interpreted slope relative to their position instead of to the coordinate axes. Drawing the axes 
was not enough; Indicating the increasing x and y directions alleviated the problems. 

The inclinometer tool measures rate of change along one direction, thus accessing slope. It requires 
measuring changes in the T and y directions to form ∂T/∂y. Combining the surface and inclinometer 
MERs simplified the process of measuring ∂T/∂y by constraining the problem to one direction. 

Complementary tasks and information 
The second part of the activity asks students to measure ∂T/∂y at a point where ∂T/∂y < 0. Students 
often made gave their individual measurements positive signs and added a negative sign to their final 
ratio. When asked to explain why this quantity was negative, students often provided answers such 
as “It is negative because the slope is negative” or “It is negative because the surface falls in the y-
direction”, keeping the sign disconnected from their measurements. Since the inclinometer’s 
configuration requires the tool be pointed toward the negative y-axis for this measurement, several 
students used this configuration to explain the negative sign for their slope. Only when students 
allowed the changes in T and y to have signs could they recognized the negative sign for ∂T/∂y as 
describing a relative sign difference between the changes in the T and y directions. 

Constructing derivatives with multiple representations 
The Hotplate concludes with students ranking ∂T/∂x and ∂T/∂y at points on a contour map. The 
dimensionality and form differences between the surface and contour plot MERs made it difficult for 
students to translate the “slope” notion of derivative to the contour map. The contour map collapses 
three dimensions of information onto two dimensions, flattening spatial notions of slope. Some 
students tried visualizing the contour data; visualizing and comparing slopes proved difficult. 

Despite the different forms of the contour map and surface, the notion of derivative as a ratio of small 
changes nicely matched the construction of partial derivatives using the inclinometer. After drawing 
a vector on the contour map, students could interpret the change in temperature and change in the 
domain along this directed vector and form ∂T/∂y. Students discussed whether these arrows should 
be unit length or extend from one known contour line to another to use known values of t. 

Discussion 
Zandieh’s theoretical framework (2001) progresses through increasingly sophisticated notions of 
derivative to ratios of small changes in two quantities. Roundy et al. (2015) extend this with a 
Numerical representation and introduce the concept of a “thick derivative”, a notion explained in 
Dray (2016, to appear), as a notion used by scientists in situations, like experiments, that involve 
discrete data or factors making it impractical or impossible to utilize the Limit notion for derivative.  
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The MERs involved in The Hotplate certainly restricted students from using some notions of 
derivative, like derivative rules, but provided opportunity for students to discuss direction and 
interpretations of derivatives. The activity illustrates that notions of slope and direction were very 
accessible to students when working with the surface representation. Although the notion of slope 
was limiting when working with contour maps, the sequence of MERs in the activity supported re-
interpretation of slope as a notion of ratio of small changes along a specified direction.  This was a 
useful derivative notion applicable for the surface, contour representations, symbolic, and word 
representations. When working with the contour plot, students broached the subject of thick 
derivatives, and such a discussion could help translate derivative concepts to science experiments. 

Implications 
Looking back to first-semester calculus, the Hotplate activity illustrates several opportunities for 
helping students discuss calculus concepts: First, combining explorations with (tangible) MERs 
(without formulaic expressions) enabled students to discuss mathematical concepts separate from 
symbolic computation. Second, asking students to find features described in context provided practice 
orienting and setting up problems. This skill, heavily used in science, likely impacts transfer. Third, 
emphasizing the differential quantities dT and dx are signed quantities to emphasize that the derivative 
is a ratio of small changes which is readily adaptable to multiple situations in mathematics as well as 
experimental settings involving measurement in science.  
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